Abstract
The paper investigates DC programming and DCA for both modeling discrete portfolio optimization under concave transaction costs as DC programs, and their solution. DC reformulations are established by using penalty techniques in DC programming. A suitable global optimization branch and bound technique is also developed where a DC relaxation technique is used for lower bounding. Numerical simulations are reported that show the efficiency of DCA and the globality of its computed solutions, compared to standard algorithms for nonconvex nonlinear integer programs.
Similar content being viewed by others
References
Markowitz, H.M.: Portfolio selection. J. Financ. 7(1), 77–91 (1952)
Konno, H., Yamazaki, H.: Mean-absolute deviation portfolio optimization model and its application to Tokyo stock market. Manag. Sci. 37(5), 519–531 (1991)
Mansini, R., Speranza, M.G.: Heuristic algorithms for portfolio selection problem with minimum transaction lots. Eur. J. Oper. Res. 114, 219–233 (1999)
Kellerer, H., Mansini, R., Speranza, M.G.: Selecting portfolios with fixed costs and minimum transaction lots. Ann. Oper. Res. 99, 287–304 (2000)
Bienstock, D.: Computational study of a family of mixed-integer quadratic programming problems. Math. Program. 74, 121–140 (1996)
Konno, H., Wijayanayake, R.: Portfolio optimization problems under concave transaction costs and minimal transaction unit constraints. Math. Program. 89(2), 233–250 (2001)
Konno, H., Yamamoto, R.: Global optimization versus integer programming in portfolio optimization under nonconvex transaction costs. J. Glob. Optim. 32, 207–219 (2005)
Konno, H., Yamamoto, R.: Integer programming approaches in mean-risk models. Comput. Manag. Sci. 2, 339–351 (2005)
Li, D., Sun, X.L., Wang, J.: Optimal lot solution to cardinality constrained mean-variance formulation for portfolio selection. Math. Financ. 16(1), 83–101 (2006)
Lin, C.C., Liu, Y.T.: Genetic algorithms for portfolio selection problems with minimum transaction lots. Eur. J. Oper. Res. 185, 393–404 (2008)
Li, H.L., Tsai, J.F.: A distributed computation algorithm for solving portfolio problems with integer variables. Eur. J. Oper. Res. 186, 882–891 (2008)
Hemmecke, R., Köppe, M., Lee, J., Weismantel, R.: Nonlinear Integer Programming. In: Jünger, M. et al. (eds.) 50 Years of Integer Programming 1958–2008, part 3, pp. 561–618. Springer (2010)
Leyffer, S.: Deterministic methods for mixed integer nonlinear programming. Ph.D. thesis, University of Dundee, Dundee, 1993
Li, D., Sun, X.L.: Nonlinear Integer Programming. Springer, New York (2006)
Le Thi, H.A., Pham Dinh, T.: A combined DC optimization—ellipsoidal branch-and-bound algorithm for solving nonconvex quadratic programming problems. J. Combin. Optim. 2(1), 9–29 (1998)
Le Thi, H.A., Pham Dinh, T.: A continuous approach for large-scale constrained quadratic zero-one programming. (In honor of Professor ELSTER, Founder of the Journal Optimization) Optimization 45(3), 1–28 (2001)
Le Thi, H.A., Pham Dinh, T.: A continuous approach for the concave cost supply problem via DC programming and DCA. Discret. Appl. Math. 156, 325–338 (2008)
Le Thi, H.A., Pham Dinh, T.: Large-scale molecular optimization from distance matrices by a D.C. optimization approach. SIAM J. Optim. 14(1), 77–114 (2003)
Le Thi, H.A., Pham Dinh, T.: The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems. Ann. Oper. Res. 133, 23–46 (2005)
Pham Dinh, T., Le Thi, H.A.: Convex analysis approach to DC programming: theory, algorithms and applications. Acta Mathematica Vietnamica 22(1), 289–355 (1997) [Dedicated to Professor Hoang Tuy on the occasion of his 70th birthday]
Pham Dinh, T., Le Thi, H.A.: A DC optimization algorithm for solving the trust region subproblem. SIAM J. Optim. 8(2), 476–505 (1998)
Hiriart-Urruty, J.B., Lemarechal, C.: Convex Analysis and Minimization Algorithms. Springer, Berlin (1993)
Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)
Ge, R.P., Huang, C.B.: A continuous approach to nonlinear integer programming. Appl. Math. Comput. 34, 39–60 (1989)
Niu, Y.S.: Programmation DC & DCA en Optimisation Combinatoire et Optimisation Polynomiale via les Techniques de SDP. Ph.D. thesis, INSA de Rouen, France (2010)
Pham, V.N.: Programmation DC et DCA pour l’optimisation non convexe/optimisation globale en variables mixtes entiè res. Codes et Applications. Ph.D. Thesis, National Institute for Applied Sciences, Rouen, April 2013
Pham Dinh, T., Le Thi, H.A.: Recent advances in DC programming and DCA. Trans. Comput. Collect. Intell. 8342, 1–37 (2014)
Zhang, G.: A note on “A continuous approach to nonlinear integer programming”. Appl. Math. Comput. 215, 2388–2389 (2009)
Le Thi, H.A., Pham Dinh, T., Le, D.M.: Exact penalty in DC programming. Vietnam J. Math. 27(2), 169–178 (1999)
Le Thi, H.A., Pham Dinh, T., Van Ngai, H.: Exact penalty and error bounds in DC programming. J. Glob. Optim. Special Issue in Memory of Reiner Horst, Founder of the Journal 52(3), 509–535 (2012)
IBM ILOG CPLEX 12.1: ILOG optimization documentation. Software available at http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
Zangwill, W.I.: Nonlinear programming via penalty functions. Manag. Sci. 13, 344–358 (1967)
Le Thi, H.A., Pham Dinh, T.: Solving a class of linearly constrained indefinite quadratic problems by DC algorithms. J. Glob. Optim. 11, 253–285 (1997)
Pham Dinh, T., Nguyen Canh, N., Le Thi, H.A.: An efficient combined DCA and B&B using DC/SDP relaxation for globally solving binary quadratic programs. J. Glob. Optim. 48, 595–632 (2010)
Le Thi, H.A.: An efficient algorithm for globally minimizing a quadratic function under convex quadratic constraints. Math. Program. Ser. A 87(3), 401–426 (2000)
Le Thi, H.A., Van Ngai, H., Pham Dinh, T.: DC programming and DCA for general DC programs. In: Do Van, T. et al. (eds.) Advanced Computational Methods for Knowledge Engineering. Advances in Intelligent Systems and Computing, vol. 282, pp. 15–35. Springer (2014)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Pham Dinh, T., Le Thi, H.A., Pham, V.N. et al. DC programming approaches for discrete portfolio optimization under concave transaction costs. Optim Lett 10, 261–282 (2016). https://doi.org/10.1007/s11590-015-0931-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11590-015-0931-2