Optimization Letters

, Volume 9, Issue 3, pp 585–600 | Cite as

Potential energy principles in networked systems and their connections to optimization problems on graphs

  • Alexander Veremyev
  • Vladimir Boginski
  • Eduardo L. Pasiliao
Original Paper
  • 131 Downloads

Abstract

We introduce the concepts of “gravitational” and “elastic” potential energy in the context of networks and investigate their implications on interpreting certain well-known graph-theoretic parameters and optimization problems. In the case of gravitational potential energy, we treat the nodes of a graph as “particles” with masses and consider the potential energy of gravitational interactions between them. We prove that the maximum clique in a graph represents the minimum gravitational potential energy structure. This result yields a natural physics-based interpretation of the well-known Motzkin-Strauss formulation for the maximum clique problem. In the case of elastic potential energy, we assume that graph nodes are located on an elastic surface, the graph edges represent “springs” connecting the nodes on the surface, and consider the potential energy corresponding to elastic deformations of springs. We show that under certain reasonable assumptions on surface deformation, the second-smallest and the largest eigenvalues of the graph Laplacian matrix correspond to the minimum and the maximum elastic potential energies of a graph, respectively. Moreover, the associated eigenvectors correspond to the node heights in the minimum and maximum energy configurations. Note that the second-smallest eigenvalue of the graph Laplacian is widely known as algebraic connectivity, and it turns out that this concept also has a simple and intuitive physics-based interpretation.

Keywords

Networks Potential energy Graph theory Optimization Maximum clique Motzkin-strauss formulation  Graph laplacian spectra Algebraic connectivity 

References

  1. 1.
    Abello, J., Pardalos, P.M., Resende, M.G.C.: On maximum clique problems in very large graphs In external memory algorithms, DIMACS series on discrete mathematics and theoretical computer science. Am. Math. Soc. 50, 119–130 (1999)MathSciNetGoogle Scholar
  2. 2.
    de Abreu, N.M.M.: Old and new results on algebraic connectivity of graphs. Linear Algebra Appl. 423(1), 53–73 (2007)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod Phys. 74, 47–97 (2002)CrossRefMATHGoogle Scholar
  4. 4.
    Boginski, V., Butenko, S., Pardalos, P.: Mining market data: a network approach. Comput. Oper. Res. 33(11), 3171–3184 (2006). doi:10.1016/j.cor.2005.01.027 CrossRefMATHGoogle Scholar
  5. 5.
    Boginski, V., Butenko, S., Pardalos, P.M.: Network models of massive datasets. Comput. Sci. Inf. Syst. 1(1), 75–89 (2004)CrossRefGoogle Scholar
  6. 6.
    Bomze, I.M., Budinich, M., Pardalos, P.M., Pelillo, M.: The maximum clique problem. In: handbook of combinatorial optimization, pp. 1–74. Kluwer (1999)Google Scholar
  7. 7.
    Brint, A.T., Willett, P.: Algorithms for the identification of three-dimensional maximal common substructures. J. Chem. Inf. Comput. Sci. 27(4), 152–158 (1987)CrossRefGoogle Scholar
  8. 8.
    Butenko, S., Wilhelm, W.E.: Clique-detection models in computational biochemistry and genomics. Eur. J. Oper. Res. 173(1), 1–17 (2006)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Chung, F.R.K.: Spectral graph theory (CBMS regional conference series in mathematics, No. 92). Am. Math. Soc. (1996).Google Scholar
  10. 10.
    Fruchterman, T.M., Reingold, E.M.: Graph drawing by force-directed placement. Softw. Pract. Exp. 21(11), 1129–1164 (1991)CrossRefGoogle Scholar
  11. 11.
    Gardiner, E.J., Artymiuk, P.J., Willett, P.: Clique-detection algorithms for matching three-dimensional molecular structures. J. Mol. Graph. Model. 15(4), 245–253 (1997)CrossRefGoogle Scholar
  12. 12.
    Grimmett, G.R., McDiarmid, C.J.H.: On colouring random graphs. Math. Proc. Camb. Philos. Soc. 77, 313–324 (1976)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Grone, R., Merris, R.: The laplacian spectrum of a graph ii. SIAM J. Discret. Math. 7(2), 221–229 (1994)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Grone, R., Merris, R., Sunder, V.: The laplacian spectrum of a graph. SIAM J. Matrix Anal. Appl. 11(2), 218–238 (1990)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Janson, S., Łuczak, T., Norros, I.: Large cliques in a power-law random graph. J. Appl. Probab. 47(4), 1124–1135 (2010)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Kobourov, S.G.: Spring embedders and force directed graph drawing algorithms. arXiv preprint arXiv:1201.3011 (2012)
  17. 17.
    Luce, R.: Connectivity and generalized cliques in sociometric group structure. Psychometrika 15(2), 169–190 (1950)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Matula, D.W.: On the complete subgraphs of a random graph. In: proceedings of the 2nd conference on combinatorial mathematics and its applications, pp. 356–369. University of North Carolina, Chapel Hill (1970)Google Scholar
  19. 19.
    Merris, R.: Laplacian matrices of graphs: a survey. Linear Algebra Appl. 197, 143–176 (1994)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Mohar, B.: Some applications of laplace eigenvalues of graphs. In: graph symmetry: algebraic methods and applications, vol. 497, of NATO ASI Series C, pp. 227–275. Kluwer (1997)Google Scholar
  21. 21.
    Mohar, B., Poljak, S.: Eigenvalues in combinatorial optimization. Springer (1993)Google Scholar
  22. 22.
    Motzkin, T.S., Straus, E.G.: Maxima for graphs and a new proof of a theorem of Turán. Can. J. Math. 17, 533–540 (1965)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Newton, I.: Philosophiae naturalis principia mathematica (mathematical principles of natural philosophy). London (1687)Google Scholar
  24. 24.
    Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked multi-agent systems. Proc. IEEE 95(1), 215–233 (2007)CrossRefGoogle Scholar
  25. 25.
    Petroski, H.: Invention by design: how engineers get from thought to thing. Harvard University Press (1996)Google Scholar
  26. 26.
    Prokopyev, O.A., Boginski, V.L., Chaovalitwongse, W., Pardalos, P.M., Sackellares, J.C., Carney, P.R.: Network-based techniques in eeg data analysis and epileptic brain modeling. In: data mining in biomedicine, pp. 559–573. Springer (2007)Google Scholar
  27. 27.
    Veremyev, A., Boginski, V.: Robustness and strong attack tolerance of low-diameter networks. In: A. Sorokin, R. Murphey, M.T. Thai, P.M. Pardalos (eds.) Dynamics of information systems: mathematical foundations, Springer proceedings in mathematics and statistics, vol. 20, pp. 137–156. Springer New York (2012)Google Scholar
  28. 28.
    Wasserman, S.: Social network analysis: methods and applications, vol. 8. Cambridge university press (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Alexander Veremyev
    • 1
  • Vladimir Boginski
    • 2
  • Eduardo L. Pasiliao
    • 1
  1. 1.Munitions DirectorateAir Force Research LaboratoryEglin AFBUSA
  2. 2.Department of Industrial an Systems Engineering, Research and Engineering Education Facility (REEF)University of FloridaShalimarUSA

Personalised recommendations