Optimization Letters

, Volume 10, Issue 2, pp 237–246 | Cite as

Advantages of simplicial partitioning for Lipschitz optimization problems with linear constraints

  • Remigijus PaulavičiusEmail author
  • Julius Žilinskas
Original Paper


The well known DIRECT (DIviding RECTangles) algorithm for global optimization requires bound constraints on variables and does not naturally address additional linear or nonlinear constraints. A feasible region defined by linear constraints may be covered by simplices, therefore simplicial partitioning may tackle linear constraints in a very subtle way. In this paper we demonstrate this advantage of simplicial partitioning by applying a recently proposed deterministic simplicial partitions based DISIMPL algorithm for optimization problems defined by general linear constraints (Lc-DISIMPL). An extensive experimental investigation reveals advantages of this approach to such problems comparing with different constraint-handling methods, proposed for use with DIRECT. Furthermore the Lc-DISIMPL algorithm gives very competitive results compared to a derivative-free particle swarm algorithm (PSwarm) which was previously shown to give very promising results. Moreover, DISIMPL guarantees the convergence to the global solution, whereas the PSwarm algorithm sometimes fails to converge to the global minimum.


Global optimization DISIMPL algorithm  DIRECT algorithm 



Postdoctoral fellowship of R. Paulavičius is being funded by European Union Structural Funds project “Postdoctoral Fellowship Implementation in Lithuania” within the framework of the Measure for Enhancing Mobility of Scholars and Other Researchers and the Promotion of Student Research (VP1-3.1-ŠMM-01) of the Program of Human Resources Development Action Plan.


  1. 1.
    Baker, C.A., Watson, L.T., Grossman, B., Mason, W.H., Haftka, R.T.: Parallel global aircraft configuration design space exploration. In: Tentner A. (ed.) High Performance Computing Symposium 2000, pp. 54–66. Society for Computer Simulation International (2000)Google Scholar
  2. 2.
    Bartholomew-Biggs, M.C., Parkhurst, S.C., Wilson, S.P.: Using DIRECT to solve an aircraft routing problem. Comput. Optim. Appl. 21(3), 311–323 (2002). doi: 10.1023/A:1013729320435 CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Carter, R.G., Gablonsky, J.M., Patrick, A., Kelley, C.T., Eslinger, O.J.: Algorithms for noisy problems in gas transmission pipeline optimization. Optim. Eng. 2(2), 139–157 (2001). doi: 10.1023/A:1013123110266 CrossRefMathSciNetzbMATHGoogle Scholar
  4. 4.
    Chiter, L.: DIRECT algorithm: a new definition of potentially optimal hyperrectangles. Appl. Math. Comput. 179(2), 742–749 (2006). doi: 10.1016/j.amc.2005.11.127 CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Conn, A.R., Scheinberg, K., Vicente, L.N.: Introduction to derivative-free optimization, vol. 8, SIAM (2009). doi: 10.1137/1.9780898718768
  6. 6.
    Cox, S.E., Haftka, R.T., Baker, C.A., Grossman, B., Mason, W.H., Watson, L.T.: A comparison of global optimization methods for the design of a high-speed civil transport. J. Global Optim. 21(4), 415–432 (2001). doi: 10.1023/A:1012782825166 CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    De Berg, M., Van Kreveld, M., Overmars, M., Schwarzkopf, O.C.: Computational geometry. Springer, Berlin, Heidelberg (2000). doi: 10.1007/978-3-662-04245-8_1
  8. 8.
    Delaunay, B.: Sur la sphere vide. Izv. Akad. Nauk SSSR. Otdelenie Matematicheskii i Estestvennyka Nauk 7(793—-800), 1–2 (1934)Google Scholar
  9. 9.
    Di Serafino, D., Liuzzi, G., Piccialli, V., Riccio, F., Toraldo, G.: A modified DIviding RECTangles algorithm for a problem in astrophysics. J. Optim. Theory Appl. 151(1), 175–190 (2011). doi: 10.1007/s10957-011-9856-9 CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    Evtushenko, Y., Posypkin, M.: A deterministic approach to global box-constrained optimization. Optim. Lett. 7(4), 819–829 (2013)CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    Evtushenko, Y.G.: Numerical methods for finding global extrema (case of a non-uniform mesh). USSR Comput. Math. Math. Phys. 11(6), 38–54 (1971)CrossRefGoogle Scholar
  12. 12.
    Finkel, D.E.: Direct optimization algorithm user guide. Center for Research in Scientific Computation, North Carolina State University 2 (2003)Google Scholar
  13. 13.
    Finkel, D.E.: Global optimization with the Direct algorithm. Ph.D. thesis, North Carolina State University (2005)Google Scholar
  14. 14.
    Finkel, D.E., Kelley, C.T.: Additive scaling and the DIRECT algorithm. J. Global Optim. 36(4), 597–608 (2006). doi: 10.1007/s10898-006-9029-9 CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    Fletcher, R.: Practical Methods of Optimization, vol. 37. Wiley, New York (1987)zbMATHGoogle Scholar
  16. 16.
    Gablonsky, J.M.: Modifications of the Direct algorithm. Ph.D. thesis, North Carolina State University (2001)Google Scholar
  17. 17.
    Gablonsky, J.M., Kelley, C.T.: A locally-biased form of the DIRECT algorithm. J. Global Optim. 21(1), 27–37 (2001). doi: 10.1023/A:1017930332101 CrossRefMathSciNetzbMATHGoogle Scholar
  18. 18.
    He, J., Watson, L.T., Ramakrishnan, N., Shaffer, C.A., Verstak, A., Jiang, J., Bae, K., Tranter, W.H.: Dynamic data structures for a DIRECT search algorithm. Comput. Optim. Appl. 23(1), 5–25 (2002). doi: 10.1023/A:1019992822938 CrossRefMathSciNetzbMATHGoogle Scholar
  19. 19.
    Hendrix, E.M., Casado, L.G., Amaral, P.: Global optimization simplex bisection revisited based on considerations by reiner horst. Computational Science and Its Applications-ICCSA 2012, pp. 159–173. Springer, Berlin, Heidelberg (2012). doi: 10.1007/978-3-642-31137-6_12
  20. 20.
    Horst, R., Pardalos, P.M. (eds.): Handbook of Global Optimization, vol. 1. Kluwer Academic Publishers, Dordrecht (1995)zbMATHGoogle Scholar
  21. 21.
    Horst, R., Pardalos, P.M., Thoai, N.V.: Introduction to Global Optimization. Kluwer Academic Publishers, Nonconvex Optimization and Its Application (1995)zbMATHGoogle Scholar
  22. 22.
    Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches. Springer, Berlin (1996)CrossRefzbMATHGoogle Scholar
  23. 23.
    Huyer, W., Neumaier, A.: Global optimization by multilevel coordinate search. J. Global Optim. 14(4), 331–355 (1999)CrossRefMathSciNetzbMATHGoogle Scholar
  24. 24.
    Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the Lipschitz constant. J. Optim. Theory Appl. 79(1), 157–181 (1993). doi: 10.1007/BF00941892 CrossRefMathSciNetzbMATHGoogle Scholar
  25. 25.
    Kvasov, D.E., Sergeyev, Y.D.: A univariate global search working with a set of Lipschitz constants for the first derivative. Optim. Lett. 3(2), 303–318 (2009). doi: 10.1007/s11590-008-0110-9 CrossRefMathSciNetzbMATHGoogle Scholar
  26. 26.
    Kvasov, D.E., Sergeyev, Y.D.: Lipschitz gradients for global optimization in a one-point-based partitioning scheme. J. Comput. Appl. Math. 236(16), 4042–4054 (2012). doi: 10.1016/ CrossRefMathSciNetzbMATHGoogle Scholar
  27. 27.
    Lera, D., Sergeyev, Y.D.: Acceleration of univariate global optimization algorithms working with Lipschitz functions and Lipschitz first derivatives. SIAM J. Optim. 23(1), 508–529 (2013). doi: 10.1137/110859129 CrossRefMathSciNetzbMATHGoogle Scholar
  28. 28.
    Liuzzi, G., Lucidi, S., Piccialli, V.: A direct-based approach exploiting local minimizations for the solution for large-scale global optimization problems. Comput. Optim. Appl. 45(2), 353–375 (2010). doi: 10.1007/s10589-008-9217-2 CrossRefMathSciNetzbMATHGoogle Scholar
  29. 29.
    Liuzzi, G., Lucidi, S., Piccialli, V.: A partition-based global optimization algorithm. J. Global Optim. 48(1), 113–128 (2010). doi: 10.1007/s10898-009-9515-y CrossRefMathSciNetzbMATHGoogle Scholar
  30. 30.
    Murty, K.G., Kabadi, S.N.: Some NP-complete problems in quadratic and nonlinear programming. Math. Program. 39(2), 117–129 (1987)CrossRefMathSciNetzbMATHGoogle Scholar
  31. 31.
    Neumaier, A.: MCS: global optimization by multilevel coordinate search.
  32. 32.
    Pardalos, P.M., Schnitger, G.: Checking local optimality in constrained quadratic programming is NP-hard. Oper. Res. Lett. 7(1), 33–35 (1988)CrossRefMathSciNetzbMATHGoogle Scholar
  33. 33.
    Paulavičius, R., Sergeyev, Y.D., Kvasov, D.E., Žilinskas, J.: Globally-biased Disimpl algorithm for expensive global optimization. J. Global Optim. 59(2–3), 545–567 (2014). doi: 10.1007/s10898-014-0180-4 CrossRefMathSciNetzbMATHGoogle Scholar
  34. 34.
    Paulavičius, R., Žilinskas, J.: Analysis of different norms and corresponding Lipschitz constants for global optimization in multidimensional case. Inf. Technol. Control 36(4), 383–387 (2007)Google Scholar
  35. 35.
    Paulavičius, R., Žilinskas, J.: Influence of Lipschitz bounds on the speed of global optimization. Technol. Econ. Dev. Econ. 18(1), 54–66 (2012). doi: 10.3846/20294913.2012.661170 CrossRefGoogle Scholar
  36. 36.
    Paulavičius, R., Žilinskas, J.: Simplicial Global Optimization. SpringerBriefs in Optimization. Springer, New York (2014). doi: 10.1007/978-1-4614-9093-7 CrossRefGoogle Scholar
  37. 37.
    Paulavičius, R., Žilinskas, J.: Simplicial Lipschitz optimization without the Lipschitz constant. J. Global Optim. 59(1), 23–40 (2014). doi: 10.1007/s10898-013-0089-3 CrossRefMathSciNetzbMATHGoogle Scholar
  38. 38.
    Paulavičius, R., Žilinskas, J., Grothey, A.: Investigation of selection strategies in branch and bound algorithm with simplicial partitions and combination of Lipschitz bounds. Optim. Lett. 4(2), 173–183 (2010). doi: 10.1007/s11590-009-0156-3 CrossRefMathSciNetzbMATHGoogle Scholar
  39. 39.
    Pintér, J.D.: Global Optimization in Action (Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications). Kluwer Academic Publishers, Dordrecht (1996)CrossRefGoogle Scholar
  40. 40.
    Piyavskii, S.A.: An algorithm for finding the absolute extremum of a function. Zh. Vychisl. Mat. mat. Fiz 12(4), 888–896 (1972)Google Scholar
  41. 41.
    Rios, L.M., Sahinidis, N.V.: Derivative-free optimization: a review of algorithms and comparison of software implementations. J. Global Optim. 56(3), 1247–1293 (2012). doi: 10.1007/s10898-012-9951-y
  42. 42.
    Sergeyev, Y.D., Kvasov, D.E.: Global search based on efficient diagonal partitions and a set of Lipschitz constants. SIAM J. Optim. 16(3), 910–937 (2006). doi: 10.1137/040621132 CrossRefMathSciNetzbMATHGoogle Scholar
  43. 43.
    Sergeyev, Y.D., Kvasov, D.E.: Lipschitz global optimization. In: Cochran, J.J., Cox, L.A., Keskinocak, P., Kharoufeh, J.P., Smith, J.C. (eds.) Wiley Encyclopedia of Operations Research and Management Science (in 8 volumes), vol. 4, pp. 2812–2828. Wiley, New York (2011)Google Scholar
  44. 44.
    Sergeyev, Y.D., Pugliese, P., Famularo, D.: Index information algorithm with local tuning for solving multidimensional global optimization problems with multiextremal constraints. Math. Program. 96(3), 489–512 (2003). doi: 10.1007/s10107-003-0372-z CrossRefMathSciNetzbMATHGoogle Scholar
  45. 45.
    Vaz, A.I.F.: PSwarm solver home page (2010). Accessed 12 Dec 2013
  46. 46.
    Vaz, A.I.F., Vicente, L.: Pswarm: a hybrid solver for linearly constrained global derivative-free optimization. Optim. Methods Softw. 24(4–5), 669–685 (2009)CrossRefMathSciNetzbMATHGoogle Scholar
  47. 47.
    Žilinskas, J.: Branch and bound with simplicial partitions for global optimization. Math. Model. Anal. 13(1), 145–159 (2008). doi: 10.3846/1392-6292.2008.13.145-159 CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institute of Mathematics and InformaticsVilnius UniversityVilniusLithuania

Personalised recommendations