Skip to main content
Log in

Discretization orders and efficient computation of cartesian coordinates for distance geometry

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

Distance geometry is a class of problems where the position of points in space is to be identified by using information about some relative distances between these points. Although continuous approaches are usually employed, problems belonging to this class can be discretized when some particular assumptions are satisfied. These assumptions strongly depend on the order in which the points to be positioned are considered. We discuss new discretization assumptions that are weaker than previously proposed ones, and present a greedy algorithm for an automatic identification of discretization orders. The use of these weaker assumptions motivates the development of a new method for computing point coordinates. Computational experiments show the effectiveness and efficiency of the proposed approaches when applied to protein instances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alipanahi, B., Krislock, N., Ghodsi, A., Wolkowicz, H., Donaldson, L., Li, M.: Determining protein structures from noesy distance constraints by semidefinite programming. J. Comput. Biol. 20(4), 296–310 (2013)

    Article  MathSciNet  Google Scholar 

  2. Berman, H., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T., Weissig, H., Shindyalov, I., Bourne, P.: The protein data bank. Nucleic Acids Res. 28, 235–242 (2000)

    Article  Google Scholar 

  3. Biswas, P., Lian, T., Wang, T., Ye, Y.: Semidefinite programming based algorithms for sensor network localization. ACM Trans. Sen. Netw. 2, 188–220 (2006)

    Article  Google Scholar 

  4. Cassioli, A., Günlük, O., Lavor, C., Liberti, L.: Discretization vertex orders in distance geometry, working paper (2014)

  5. Coope, I.D.: Reliable computation of the points of intersection of \(n\) spheres in \(n\)-space. ANZIAM J. 42, 461–477 (2000)

    MathSciNet  Google Scholar 

  6. Costa, V., Mucherino, A., Lavor, C., Carvalho, L.M., Maculan, N.: On suitable orders for discretizing molecular distance geometry problems related to protein side chains. In: IEEE Conference Proceedings, pp. 397–402. Workshop on Computational Optimization (WCO12), FedCSIS12, Wroclaw, Poland (2012)

  7. Crippen, G.M., Havel, T.F.: Distance Geometry and Molecular Conformation. John Wiley & Sons, New York (1988)

    MATH  Google Scholar 

  8. Gonçalves, D., Mucherino, A., Lavor, C.: Energy-based pruning devices for the bp algorithm for distance geometry. In: IEEE Conference Proceedings, pp. 335–340. Workshop on Computational Optimization (WCO13), FedCSIS13, Krakow, Poland (2013)

  9. Grosso, A., Locatelli, M., Schoen, F.: Solving molecular distance geometry problems by global optimization algorithms. Comput. Optim. Appl. 43(1), 23–37 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lavor, C., Lee, J., John, A.L.S., Liberti, L., Mucherino, A., Sviridenko, M.: Discretization orders for distance geometry problems. Optim. Lett. 6(4), 783–796 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lavor, C., Liberti, L., Maculan, N., Mucherino, A.: The discretizable molecular distance geometry problem. Comput. Optim. Appl. 52, 115–146 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lavor, C., Liberti, L., Mucherino, A.: The interval branch-and-prune algorithm for the discretizable molecular distance geometry problem with inexact distances. J. Glob. Optim. 56(3), 855–871 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Liberti, L., Lavor, C., Maculan, N., Mucherino, A.: Euclidean distance geometry and applications. SIAM Review 56(1), to appear (2014)

  14. Linge, J.P., Nilges, M.: Influence of non-bonded parameters on the quality of nmr structures: a new force field for nmr structure calculation. J. Biomol. NMR 13(1), 51–59 (1999)

    Article  Google Scholar 

  15. Malliavin, T.E., Mucherino, A., Nilges, M.: Distance geometry in structural biology: new perspectives. In [19] pp. 329–350 (2013)

  16. Moré, J.J., Wu, Z.: Distance geometry optimization for protein structures. J. Glob. Optim. 15, 219–223 (1999)

    Article  MATH  Google Scholar 

  17. Mucherino, A.: On the identification of discretization orders for distance geometry with intervals. In: Proceedings of Geometric Science of Information (GSI13). Lecture Notes in Computer Science 8085, pp. 231–238. France, Paris (2013)

  18. Mucherino, A., Lavor, C., Liberti, L.: The discretizable distance geometry problem. Optim. Lett. 6(8), 1671–1686 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mucherino, A., Lavor, C., Liberti, L., Maculan, N. (eds.): Distance Geometry: Theory, Methods and Applications, p 410. Springer, New York (2013)

  20. Thompson, H.B.: Calculation of cartesian coordinates and their derivatives from internal molecular coordinates. J. Chem. Phys. 47, 3407–3410 (1967)

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank Carlile Lavor and Leo Liberti for the fruitful comments to this paper. We are also thankful to Brittany Region (France) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Mucherino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonçalves, D.S., Mucherino, A. Discretization orders and efficient computation of cartesian coordinates for distance geometry. Optim Lett 8, 2111–2125 (2014). https://doi.org/10.1007/s11590-014-0724-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-014-0724-z

Keywords

Navigation