Optimization Letters

, Volume 8, Issue 4, pp 1245–1259 | Cite as

Exact identification of critical nodes in sparse networks via new compact formulations

  • Alexander Veremyev
  • Vladimir Boginski
  • Eduardo L. Pasiliao
Original Paper

Abstract

Critical node detection problems aim to optimally delete a subset of nodes in order to optimize or restrict a certain metric of network fragmentation. In this paper, we consider two network disruption metrics which have recently received substantial attention in the literature: the size of the remaining connected components and the total number of node pairs connected by a path. Exact solution methods known to date are based on linear 0–1 formulations with at least \(\varTheta (n^3)\) entities and allow one to solve these problems to optimality only in small sparse networks with up to 150 nodes. In this work, we develop more compact linear 0–1 formulations for the considered types of problems with \(\varTheta (n^2)\) entities. We also provide reformulations and valid inequalities that improve the performance of the developed models. Computational experiments show that the proposed formulations allow finding exact solutions to the considered problems for real-world sparse networks up to 10 times larger and with CPU time up to 1,000 times faster compared to previous studies.

Keywords

Combinatorial optimization Networks Graphs Critical nodes  Node interdiction Linear 0–1 formulations 

References

  1. 1.
    Sun, F., Shayman, M.A.: On pairwise connectivity of wireless multihop networks. Int. J. Secur. Netw. 2(1/2), 37–49 (2007)CrossRefGoogle Scholar
  2. 2.
    Jorgić, M., Stojmenović, I., Hauspie, M., Simplot-Ryl, D.: Localized algorithms for detection of critical nodes and links for connectivity in ad hoc networks. In: Proceeding of the third annual IFIP mediterranean ad hoc networking workshop, Med-Hoc-Net (2004)Google Scholar
  3. 3.
    Borgatti, S.P.: Identifying sets of key players in a social network. Comput. Math. Organ. Theory 12(1), 21–34 (2006)CrossRefMATHGoogle Scholar
  4. 4.
    Krebs, V.: Uncloaking terrorist networks, first monday. http://www.firstmonday.org/issues/issue7_4/krebs/ (2002)
  5. 5.
    Taniguchi, C.M., Emanuelli, B., Kahn, R.C.: Critical nodes in signalling pathways: insights into insulin action. Nat. Rev. Mol. Cell. Biol. 7(2), 85–96 (2006)CrossRefGoogle Scholar
  6. 6.
    Boginski, V., Commander, C.W.: Identifying critical nodes in protein–protein interaction networks. In: Butenko, S., Chaovalitwongse, P., Pardalos, P. (eds.) Clustering Challenges in Biological Networks, pp. 153–167. World Scientific, London (2009)CrossRefGoogle Scholar
  7. 7.
    Medlock, J., Galvani, A.P.: Optimizing influenza vaccine distribution. Science 325(5948), 1705–1708 (2009)CrossRefGoogle Scholar
  8. 8.
    Longini, I.M., Halloran, M.E.: Strategy for distribution of influenza vaccine to high-risk groups and children. Am. J. Epidemiol. 161(4), 303–306 (2005)CrossRefGoogle Scholar
  9. 9.
    Cohen, R., Havlin, S., ben Avraham, D.: Efficient immunization strategies for computer networks and populations. Phys. Rev. Lett. 91, 247901 (2003)CrossRefGoogle Scholar
  10. 10.
    Nian, F., Wang, X.: Efficient immunization strategies on complex networks. J. Theor. Biol. 264(1), 77–83 (2010)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Arulselvan, A., Commander, C.W., Elefteriadou, L., Pardalos, P.M.: Detecting critical nodes in sparse graphs. Comput. Oper. Res. 36(7), 2193–2200 (2009)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Arulselvan, A., Commander, C., Shylo, O., Pardalos, P.: Cardinality-constrained critical node detection problem. In: Gulpinar, N., Harrison, P., Rustem, B. (eds.) Performance Models and Risk Management in Communications Systems, Vol. 46 of Springer Optimization and its Applications, pp. 79–91. Springer, New York (2011)Google Scholar
  13. 13.
    Dinh, T., Xuan, Y., Thai, M., Park, E., Znati, T.: On approximation of new optimization methods for assessing network vulnerability, In: INFOCOM, 2000 Proceedings of the IEEE, 1–9 (2010)Google Scholar
  14. 14.
    Dinh, T.N., Xuan, Y., Thai, M.T., Pardalos, P.M., Znati, T.: On new approaches of assessing network vulnerability: hardness and approximation. IEEE/ACM Trans. Netw. 20(2), 609–619 (2012)CrossRefGoogle Scholar
  15. 15.
    Fan, N., Pardalos, P.M.: Robust optimization of graph partitioning and critical node detection in analyzing networks. In: Proceedings of the 4th international conference on combinatorial optimization and applications, volume part 1, COCOA’10, Springer-Verlag, Berlin, 170–183 (2010)Google Scholar
  16. 16.
    Shen, Y., Nguyen, N.P., Xuan, Y., Thai, M.T.: On the discovery of critical links and nodes for assessing network vulnerability. IEEE Trans. Netw (2012, to appear)Google Scholar
  17. 17.
    Ventresca, M.: Global search algorithms using a combinatorial unranking-based problem representation for the critical node detection problem. Comput. Oper. Res. 39(11), 2763–2775 (2012)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Shen, S., Smith, J.C.: Polynomial-time algorithms for solving a class of critical node problems on trees and series-parallel graphs. Networks 60(2), 103–119 (2012)MATHMathSciNetGoogle Scholar
  19. 19.
    Di Summa, M., Grosso, A., Locatelli, M.: Branch and cut algorithms for detecting critical nodes in undirected graphs. Comput. Optim. Appl. 53(3), 649–680 (2012)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Fico\(^{\rm TM}\) XPress optimization suite 7.4. http://www.fico.com (2012)
  21. 21.
    Davis, T.A., Hu, Y.: The University of Florida sparse matrix collection. ACM Trans. Math. Softw. 38(1), 1–25 (2011)MathSciNetGoogle Scholar
  22. 22.

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Alexander Veremyev
    • 1
  • Vladimir Boginski
    • 2
  • Eduardo L. Pasiliao
    • 1
  1. 1.Munitions DirectorateAir Force Research LaboratoryEglin AFBUSA
  2. 2.Department of Industrial and Systems EngineeringUniversity of FloridaGainesvilleUSA

Personalised recommendations