Skip to main content

Advertisement

Log in

Memetic self-adaptive evolution strategies applied to the maximum diversity problem

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

The maximum diversity problem consists in finding a subset of elements which have maximum diversity between each other. It is a very important problem due to its general aspect, that implies many practical applications such as facility location, genetics, and product design. We propose a method based on evolution strategies with local search and self-adaptation of the parameters. For all time limits from 1 to 300 s as well as for time to converge to the best solutions known, this method leads to better results when compared to other state-of-the-art algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. All additional information mentioned in this paper, such as source codes and results, is available from the authors on www.alandefreitas.com/downloads/problem-instances/maximum-diversity-problem.php.

  2. http://www.optsicom.es/mdp.

References

  1. Agrafiotis, D.K.: Stochastic algorithms for maximizing molecular diversity. J. Chem. Inf. Comput. Sci. 37(5), 841–851 (1997). doi:10.1021/ci9700337

    Google Scholar 

  2. Aringhieri, R., Bruglieri, M., Cordone, R.: Optimal results and tight bounds for the maximum diversity problem. Found. Comput. Decision Sci. 34(2), 73–86 (2009)

    MATH  Google Scholar 

  3. Aringhieri, R., Cordone, R.: Comparing local search metaheuristics for the maximum diversity problem. J. Operational Res. Soc. 62(2), 266–280 (2011)

    Article  Google Scholar 

  4. Back, T.: Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms. Oxford University Press, USA (1996)

    Google Scholar 

  5. Berretta, R., Moscato, P.: New ideas in optimization chap. The number partitioning problem: an open challenge for evolutionary computation? pp. 261–278. McGraw-Hill Ltd., UK, Maidenhead, UK, England (1999). http://dl.acm.org/citation.cfm?id=329055.329082

  6. Brimberg, J., Mladenovic, N., Urosevic, D., Ngai, E.: Variable neighborhood search for the heaviest-subgraph. Comput. Operat. Res. 36(11), 2885–2891 (2009). doi:10.1016/j.cor.2008.12.020

    Google Scholar 

  7. Duarte, A., Marti, R.: Tabu search and grasp for the maximum diversity problem. Eur. J. Operational Res. 178(1), 71–84 (2007). doi:10.1016/j.ejor.2006.01.021

    Google Scholar 

  8. Ghosh, J.B.: Computational aspects of the maximum diversity problem. Operat. Res. Lett. 19(4), 175–181 (1996). doi:10.1016/0167-6377(96)00025-9

  9. Glover, F., Kuo, C., Dhir, K.: Heuristic algorithms for the maximum diversity problem. J. Inf. Optimization Sci. 19(1), 109–132 (1998)

    Article  MATH  Google Scholar 

  10. Hansen, P., Mladenović, N.: First vs. best improvement: an empirical study. Discrete Appl. Math. 154(5), 802–817 (2006). doi:10.1016/j.dam.2005.05.020

  11. Kuo, C.C., Glover, F., Dhir, K.S.: Analyzing and modeling the maximum diversity problem by zero-one programming. Decision Sci. 24(6), 1171–1185 (1993). doi:10.1111/j.1540-5915.1993.tb00509.x

    Google Scholar 

  12. Lozano, M., Molina, D., Garcí-a-Martí-nez, C.: Iterated greedy for the maximum diversity problem. Eur. J. Operational Res. 214(1), 31–38 (2011). doi:10.1016/j.ejor.2011.04.018

    Google Scholar 

  13. Martí, R., Gallego, M., Duarte, A.: A branch and bound algorithm for the maximum diversity problem. Eur. J. Operational Res. 200(1), 36–44 (2010). doi:10.1016/j.ejor.2008.12.023

  14. Martí, R., Gallego, M., Duarte, A., Pardo, E.: Heuristics and metaheuristics for the maximum diversity problem. J. Heuristics 1–25 (2011). doi:10.1007/s10732-011-9172-4

  15. Palubeckis, G.: Iterated tabu search for the maximum diversity problem. Appl. Math. Comput. 189(1), 371–383 (2007). doi:10.1016/j.amc.2006.11.090

    Google Scholar 

  16. Resende, M., Martí, R., Gallego, M., Duarte, A.: Grasp and path relinking for the max-min diversity problem. Comput. Operat. Res. 37(3), 498–508 (2010). doi:10.1016/j.cor.2008.05.011 (Metaheuristics)

  17. Resende, M.G.C., Ribeiro, C.C., Glover, F., Martí, R.: Scatter search and path-relinking: Fundamentals, advances, and applications. In: Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics, International Series in Operations Research and Management Science, vol. 146, pp. 87–107. Springer US (2010). doi:10.1007/978-1-4419-1665-5_4

  18. Silva, G., Ochi, L., Martins, S.: Experimental comparison of greedy randomized adaptive search procedures for the maximum diversity problem. In: Ribeiro, C., Martins, S. (eds.) Experimental and Efficient Algorithms, Lecture Notes in Computer Science, vol. 3059, pp. 498–512. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24838-5_37

  19. Silva, G.C., Andrade, M.R., Ochi, L.S., Martins, S.L., Plastino, A.: New heuristics for the maximum diversity problem. J. Heuristics 13(4), 315–336 (2007). doi:10.1007/s10732-007-9010-x

    Google Scholar 

  20. Wang, J., Zhou, Y., Cai, Y., Yin, J.: Learnable tabu search guided by estimation of distribution for maximum diversity problems. Soft Computing 16(4), 711–728 (2012). doi:10.1007/s00500-011-0780-6

    Google Scholar 

  21. Wang, J., Zhou, Y., Yin, J., Zhang, Y.: Competitive hopfield network combined with estimation of distribution for maximum diversity problems. Trans. Sys. Man Cyber. Part B 39(4), 1048–1066 (2009). doi:10.1109/TSMCB.2008.2010220

    Google Scholar 

  22. Weitz, R., Lakshminarayanan, S.: An empirical comparison of heuristic and graph theoretic methods for creating maximally diverse groups, vlsi design, and exam scheduling. Omega 25(4), 473–482 (1997). doi:10.1016/S0305-0483(97)00007-8

Download references

Acknowledgments

We sincerely thank the reviewers for their valuable contribution to this paper. This work has been supported by the Brazilian agencies CAPES, CNPq, and FAPEMIG; and the Marie Curie International Research Staff Exchange Scheme Fellowship within the 7th European Community Framework Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Robert Resende de Freitas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Freitas, A.R.R., Guimarães, F.G., Pedrosa Silva, R.C. et al. Memetic self-adaptive evolution strategies applied to the maximum diversity problem. Optim Lett 8, 705–714 (2014). https://doi.org/10.1007/s11590-013-0610-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-013-0610-0

Keywords

Navigation