Optimization Letters

, Volume 8, Issue 2, pp 435–446 | Cite as

Heuristics for the multi-level capacitated minimum spanning tree problem

  • Christos A. Pappas
  • Angelos-Christos G. Anadiotis
  • Chrysa A. Papagianni
  • Iakovos S. Venieris
Original Paper

Abstract

The capacitated minimum spanning tree (CMST) problem is fundamental to the design of centralized communication networks. In this paper we consider the multi-level capacitated minimum spanning tree problem, a generalization of the well-known CMST problem. Based on work previously done in the field, three heuristics are presented, addressing unit and non-unit demand cases. The proposed heuristics have been also integrated into a mixed integer programming solver. Evaluation results are presented, for an extensive set of experiments, indicating the improvements that the heuristics bring to the particular problem.

Keywords

Multi-level capacitated minimum spanning tree problem Heuristics Network design 

References

  1. 1.
    Ahuja, R.K., Orlin, J.B., Sharma, D.: Multi-exchange neighborhood structures for the capacitated minimum spanning tree problem. Math. Progr. 91, 71–97 (2001)MATHMathSciNetGoogle Scholar
  2. 2.
    Breslau, L., Cao, P., Fan, L., Phillips, G., Shenker, S.: Web caching and zipf-like distributions: evidence and implications. In: INFOCOM9, vol. 1, pp. 126–134 (1999)Google Scholar
  3. 3.
    Esau, L.R., Williams, K.C.: On teleprocessing system design: part ii a method for approximating the optimal network. IBM Syst. J. 5, 142–147 (1966)CrossRefGoogle Scholar
  4. 4.
    Falkenauer, E.: A hybrid grouping genetic algorithm for bin packing. J. Heuristics 2, 5–30 (1996)CrossRefGoogle Scholar
  5. 5.
    Gamvros, I., Golden, B., Raghavan, S.: The multilevel capacitated minimum spanning tree problem. INFORMS J. Comput. 18(3), 348–365 (2006)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Gamvros, I., Raghavan, S., Golden, B.: An evolutionary approach for the multi-level capacitated minimum spanning tree. Institute for Systems Research, University of Maryland, Technical Report (2002)Google Scholar
  7. 7.
    Gavish, B.: Topological design of centralized computer networks—formulations and algorithms. Networks 12, 355–377 (1982)Google Scholar
  8. 8.
    Gavish, B.: Formulations and algorithms for the capacitated minimal directed tree problem. J. ACM 30, 118–132 (1983)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Gouveia, L.: A comparison of directed formulations for the capacitated minimal spanning tree problem. Telecommun. Syst. 1, 51–76 (1993)CrossRefGoogle Scholar
  10. 10.
    Gouveia, L.: A 2n constraint formulation for the capacitated minimal spanning tree problem. Oper. Res. 43, 130–141 (1995)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
  12. 12.
    Martins, A.X., Souza, M.C., Souza, M.J., Toffolo, T.A.: Grasp with hybrid heuristic-subproblem optimization for the multi-level capacitated minimum spanning tree problem. J. Heuristics 15, 133–151 (2009)CrossRefMATHGoogle Scholar
  13. 13.
    Papadimitriou, C.: The complexity of the capacitated tree problem. Networks 8, 217–230 (1978)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Papagianni, C., Pappas, C., Lefkaditis, N., Venieris, I.: Particle swarm optimization for the multi level capacitated minimum spanning tree. In: IMCSIT, pp. 765–770 (2009)Google Scholar
  15. 15.
    Uchoa, E., Toffolo, T.A.M., de Souza, M.C., Martins, A.X.: Branch-and-cut and grasp with hybrid local search for the multi-level capacitated minimum spanning tree problem. In: INOC 2009. Pisa, Italy (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Christos A. Pappas
    • 1
  • Angelos-Christos G. Anadiotis
    • 1
  • Chrysa A. Papagianni
    • 2
  • Iakovos S. Venieris
    • 1
  1. 1.Intelligent Communications and Broadband Networks LaboratoryNational Technical University of AthensAthensGreece
  2. 2.Network Management and Optimal Design LaboratoryNational Technical University of AthensAthensGreece

Personalised recommendations