Skip to main content
Log in

A min–max vehicle routing problem with split delivery and heterogeneous demand

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

In this article, we introduce a new variant of min–max vehicle routing problem, where various types of customer demands are satisfied by heterogeneous fleet of vehicles and split delivery of services is allowed. We assume that vehicles may serve one or more types of service with unlimited service capacity, and varying service and transfer speed. A heuristic solution approach is proposed. We report the solutions for several test problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Applegate, D., Cook, W., Dash, S., Rohe, A.: Solution of a min–max vehicle routing problem. INFORMS J. Comput. 14(2), 132–143 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arkin, E.M., Hassin, R., Levin, A.L.: Approximations for minimum and min–max vehicle routing problem. J. Algorithms 1–16 (2005)

  3. Augerat, P., Belenguer, J.M., Benavent, E., Corberan, A., Naddef, D., Rinaldi, G.: Computational results with a branch and cut code for the capacitated vehicle routing problem. Tech. Rep. 1 RR949-M, ARTEMIS-IMAG, Grenoble France (1995)

  4. Averbakh, I., Berman, O.: A heuristic with worst-case analysis for minimax routing of two traveling salesman on a tree. Discrete Appl. Math. 68, 17–32 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Campbell, A.M., Vandenbussche, D., Hermann, W.: Routing for relief efforts. Transp. Sci. 42, 127–145 (2008)

    Article  Google Scholar 

  6. Carlsson, J., Ge, D., Subramanian, A., Wu, A., Ye, Y.: Solving min–max multi depot vehicle routing problem. Fields Inst. Commun. 55, 31–46 (2009)

    Google Scholar 

  7. Choi, E., Tcha, D.W.: A column generation approach to the heterogeneous fleet vehicle routing problem. Comput. Oper. Res. 34, 2080–2095 (2007)

    Article  MATH  Google Scholar 

  8. Christofides, N., Eilon, S.: An algorithm for the vehicle-dispatching problem. Opl. Res. Q. 20, 309–318 (1969)

    Article  Google Scholar 

  9. Christofides, N., Mingozzi, A., Toth, P., Sandi, C. (eds.): Combinatorial Optimization (Chapter 11). Wiley, Chichester (1979)

    Google Scholar 

  10. Christofides, N., Mignozzi, A., Toth, P.: Exact algorithms for the vehicle routing problem based on spanning tree and shortest path relaxation. Math. Program. 19, 255–282 (1981)

    Article  Google Scholar 

  11. Cordeau, J.F., Deasulniers, G., Desrosiers, J., Solomon, M.M., Soumis, F.: VRP with time windows. In: Toth, P., Vigo, D. (eds.) The Vehicle Routing Problem. Monographs on Discrete Mathematics and Applications, vol. 9, pp. 157–193. SIAM, Philadelphia (2002)

  12. Cordeau, J.F., Gendreau, M., Hertz, A., Laporte, G., Sormany, J.S.: New heuristics for the vehicle routing problem. In: Langevine, A., Riopel, D. (eds.) Logistic Systems: Design and Optimization, pp. 279–298. Wiley, New York (2005)

  13. Crainic, T.G., Laporte, G.: Fleet Management and Logistics. Kluwer, Dordrecht (1998)

    Book  MATH  Google Scholar 

  14. Dantzig, G.B., Ramser, J.H.: The truck dispatching problem. Manag. Sci. 6, 80–91 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fisher, M.L., Vehicle routing, Ball, M.O., Magnanti, T.L., Momma, C.L., Nemhauser, G.L. (eds.) Network Routing. Handbooks in Operations Research and Management Science, vol. 8, pp. 1–33. North-Holland, Amsterdam (1995)

  16. França, P.M., Gendreau, M., Laporte, G., Mller, F.M.: The \(m\)-Traveling Salesman Problem with minmax objective. Transp. Sci. 29, 267–275 (1995)

    Article  MATH  Google Scholar 

  17. Gendreau, M., Guertin, F., Potvin, J.Y., Séguin, R.: Neighborhood search heuristics for a dynamic vehicle dispatching problem pick-ups and deliveries. Transp. Res. C 14, 157–174 (2006)

    Article  Google Scholar 

  18. Golden, B.L., Assad, A.A.: Vehicle Routing: Methods and Studies. North-Holland, Amsterdam (1988)

    MATH  Google Scholar 

  19. Golden, B.L., Laporte, G., Taillard, E.D.: An adaptive memory heuristic for a class of vehicle routing problems with minmax objective. Comput. Oper. Res. 24, 445–452 (1997)

    Article  MATH  Google Scholar 

  20. Golden, B.L., Raghavan, S., Wasil, E.: The Vehicle Routing Problem. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  21. Hadjiconstantinou, E., Christofides, N., Mignozzi, A.: A new exact algorithm for the vehicle routing problem based on \(q\)-paths and \(k\)-shortest path relaxations. Ann. Oper. Res. 61, 21–43 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  22. Laporte, G., Osman, I.H.: Routing problems: a bibliography. Ann. Oper. Res. 61, 227–262 (1995)

    Article  MATH  Google Scholar 

  23. Laporte, G.: Vehicle routing. In: Amico, M.D., Maffioli, F., Martello, S. (eds.) Annotated Bibliographies in Combinatorial Optimization, pp. 223–240. Wiley, Chichester (1997)

  24. Laporte, G., Gendreau, M., Potvin, J.Y., Semet, F.: Classical and modern heuristics for the vehicle routing problem. Int. Trans. Oper. Res. 7, 285–300 (2000)

    Article  MathSciNet  Google Scholar 

  25. Marinakis, Y., Migdalas, A.: Heuristic solutions of vehicle routing problems in supply chain management. In: Pardalos, P.M., et al. (eds.) Combinatorial and Global Optimization, pp. 205–235. Scientific Works (2002)

  26. Marinakis, Y., Migdalas, A.: Annotated bibliography in vehicle routing. Oper. Res. Int. J. 7, 27–46 (2007)

    Article  Google Scholar 

  27. Ren, C.: Solving min–max vehicle routing problem. J. Softw. 6, 1851–1856 (2011)

    Google Scholar 

  28. Renaud, J., Boctor, F.F.: A sweep-based algorithm for the fleet size and mix vehicle routing problem. Eur. J. Oper. Res. 140, 618–628 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Røpke, S., Pisinger, D.: An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows. Transp. Sci. 40, 455–472 (2006)

    Article  Google Scholar 

  30. Taillard, E.D.: A heuristic column generation method for the heterogeneous fleet VRP. RAIRO Recherche Opérationnelle 33, 1–14 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tan, K.C., Chew, Y.H., Lee, L.H.: A hybrid multiobjective evolutionary algorithm for solving vehicle routing problem with time windows. Comput. Optim. Appl. 34, 115–151 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Toth, P., Vigo, D.: The Vehicle Routing Problem. Monographs on Discrete Mathematics and Applications, vol. 9. SIAM, Philadelphia (2002)

  33. Toth, P., Vigo, D.: An overview of vehicle routing problems. In: Toth, P., Vigo, D. (eds.) The Vehicle Routing Problem. Monographs on Discrete Mathematics and Applications, vol. 9, pp. 1–26. SIAM, Philadelphia (2002)

  34. Vidal, T., Crainic, T.G., Gendreau, M., Prins, C.: Heuristics for multi-attribute vehicle routing problems: a survey and synthesis. Technical Report, CIRRELT (2012)

  35. Xu, Z., Xu, L., Li, C.L.: Approximation results for min–max path cover problems in vehicle routing. Naval Res. Logist. 57, 728–748 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yildirim, U.M., Çatay, B.: A time-based pheromone approach for the ant system. Optim. Lett. doi:10.1007/s11590-012-0451-2

Download references

Acknowledgments

The authors thank the associate editor and the two reviewers for their helpful comments on the previous version of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orhan Karasakal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (tex 27 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yakıcı, E., Karasakal, O. A min–max vehicle routing problem with split delivery and heterogeneous demand. Optim Lett 7, 1611–1625 (2013). https://doi.org/10.1007/s11590-012-0571-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-012-0571-8

Keywords

Navigation