Skip to main content
Log in

Preserving maximal monotonicity with applications in sum and composition rules

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

In this paper, we study maximal monotonicity preserving mappings on the Banach space X × X *. Indeed, for a maximal monotone set \({M \subset X\times X^*}\) and for a multifunction \({T: X \times X^* \multimap Y \times Y^*}\) , under some sufficient conditions on M and T we show that T(M) is maximal monotone. As two consequences of this result we get sum and composition rules for maximal monotone operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alimohammady M., Dadashi V.: Maximal monotonicity of the operator S + A * TA under w *-closed condition. JARPM 2(4), 48–55 (2010)

    Article  MathSciNet  Google Scholar 

  2. Arens R.: Operational calculus of linear relations. Pacific J. Math. 11, 9–23 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aubin J.P., Frankowska H.: Set-valued analysis. Birkhauser, Boston (1990)

    MATH  Google Scholar 

  4. Borwein J.M.: Fifty years of maximal monotonicity. Optim. Lett. 4(4), 473–490 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Borwein J.M.: Maximal monotonicity via convex analysis. J. Convex Anal. 13, 561–586 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Bot R.I., Grad S.M., Wanka G.: Maximal monotonicity for the precomposition with a linear operator. SIAM J. Optim. 17(4), 1239–1252 (2006)

    Article  MathSciNet  Google Scholar 

  7. Gabay, D.: Applications of the method of multipliers to variational inequalities. In: Fortin, M., Glowinski, R., (eds.) Argmented Lagrangian Methods: Applications to the numerical solution of boundary-value problems. Studies in Mathematics and its Applications, vol. 15, pp. 299–311. North-Holland, Amsterdam

  8. Giannessi, F., Maugeri, A., Pardalos, P.M. (eds): Equilibrium Problems Nonsmooth Optimization and Variational Inequality Models. Kluwer Academic Publishers, Dordrecht (2002)

    Google Scholar 

  9. Hadjisavvas, N., Pardalos, P. (eds.): Advances in Convex Analysis and Global Optimization, in the series Nonconvex Optimization and Applications, vol. 54. Kluwer Academic Publishers, Dordrecht (2001) (ISBN 0-7923-6942-4)

  10. Jeyakumar V., Wu Z.Y.: A dual criterion for maximal monotonicity of composition operators. Set-Valued Anal. 15, 265–273 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jeyakumar, V., Wu, Z.Y.: Bivariate inf-convolution formula and a dual condition for maximal monotonicity (2005) (Unpublished preprint)

  12. Pardalos P.M., Rassias T.M., Khan A.A.: Nonlinear Analysis and Variational Problems. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  13. Pennanen T.: Dualization of generalized equations of maximal monotone type. SIAM J. Optim. 10, 809–835 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Penot J.-P.: A representation of maximal monotone operators by closed convex functions and its impact on calculus rules. C. R. Math. Acad. Sci. Paris 338(11), 853–858 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Penot J.-P.: The relevance of convex analysis for the study of monotonicity. Nonlinear Anal. 58(7–8), 855–871 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Penot J.-P., Zalinescu C.: Some problems about the representation of monotone operators by convex functions. ANZIAM J. 47(1), 1–20 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Robinson S.: Composition duality and maximal monotonicity. Math. Program. 85, 1–13 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rockafellar R.T.: On the maximal monotonicity of subdifferential mappings. Pacific J. Math. 33(1), 209–216 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rockafellar R.T.: On the maximality of sums of nonlinear monotone operators. Trans. Am. Math. Soc. 149, 75–88 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  20. Simons S.: SSDB spaces and maximal monotonicity. J. Glob. Optim. 50(1), 23–37 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Simons S.: Minimax and Monotonicity, Lecture Notes in Mathematics. vol. 1963. Springer, Berlin (1998)

  22. Simons S., Zalinescu C.: Fenchel Duality, Fitzpatrick functions and maximal monotonicity. J. Convex Nonlinear Anal. 6, 1–22 (2005)

    MathSciNet  MATH  Google Scholar 

  23. Zalinescu C.: Convex Analysis in General Vector Spaces. World Scientific, Singapore (2002)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Dadashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alimohammady, M., Dadashi, V. Preserving maximal monotonicity with applications in sum and composition rules. Optim Lett 7, 511–517 (2013). https://doi.org/10.1007/s11590-011-0435-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-011-0435-7

Keywords

Navigation