Skip to main content
Log in

A branch-and-cut algorithm for the Steiner tree problem with delays

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript


In this paper, we investigate the Steiner tree problem with delays, which is a generalized version of the Steiner tree problem applied to multicast routing. For this challenging combinatorial optimization problem, we present an enhanced directed cut-based MIP formulation and an exact solution method based on a branch-and-cut approach. Our computational study reveals that the proposed approach can optimally solve hard dense instances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Achterberg T., Koch T., Martin A.: Branching rules revisited. Oper. Res. Lett. 33(1), 42–54 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Althaus, E., Polzin, T., Daneshmand, S.V.: Improving linear programming approaches for the Steiner tree problem. In: Experimental and efficient algorithms. Lecture Notes in Computer Science, vol. 2647, pp. 1–14. Springer, Berlin (2003)

  3. Aneja Y.P.: An integer linear programming approach to the Steiner problem in graphs. Networks 10(2), 167–178 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  4. Applegate, D., Bixby, R., Cook W.: Finding cuts in the tsp (a preliminary report) (1995)

  5. Ascheuer N., Fischetti M., Grötschel M.: Solving the asymmetric travelling salesman problem with time windows by branch-and-cut. Math. Program. 90(3, Ser. A), 475–506 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ascheuer N., Fischetti M., Grötschel M.: A polyhedral study of the asymmetric traveling salesman problem with time windows. Networks 36(2), 69–79 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Costa A.M., Cordeau J.-F., Laporte G.: Fast heuristics for the Steiner tree problem with revenues, budget and hop constraints. Eur. J. Oper. Res. 190(1), 68–78 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Costa A.M., Cordeau J.F., Laporte G.: Models and branch-and-cut algorithms for the Steiner tree problem with revenues, budget and hop constraints. Networks 53(2), 141–159 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Du, D.Z., Lu, B., Ngo, H., Pardalos, P.M.: Steiner tree problems. In: Floudas, C., Pardalos, P. (eds.) Encyclopedia of Optimization, vol. 5, pp. 227–290 (2001)

  10. Ghaboosi N., Haghighat A.T.: Tabu search based algorithms for bandwidth-delay-constrained least-cost multicast routing. Telecommun. Syst. 34(3–4), 147–166 (2007)

    Article  Google Scholar 

  11. Ghanwani A.: Neural and delay based heuristics for the Steiner problem in networks. Eur. J. Oper. Res. 108(2), 241–265 (1998)

    Article  MATH  Google Scholar 

  12. Gouveia L.: Using the Miller-Tucker-Zemlin constraints to formulate a minimal spanning tree problem with Hop constraints. Comput. Oper. Res. 22(9), 959–970 (1995)

    Article  MATH  Google Scholar 

  13. Johnson E.L., Nemhauser G.L., Savelsbergh M.W.P.: Progress in linear programming-based algorithms for integer programming: an exposition. INFORMS J. Comput. 12, 2–23 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Koch T., Martin A.: Solving Steiner tree problems in graphs to optimality. Networks 32(3), 207–232 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Koch, T., Martin, A., Voβ, S.: SteinLib.

  16. Kompella V.P., Pasquale J., Polyzos G.C.: Multicast routing for multimedia communication. IEEE/ACM Trans. Netw. 1(3), 286–292 (1993)

    Article  Google Scholar 

  17. Kun Z., Heng W., Liu F.Y.: Distributed multicast routing for delay and delay variation-bounded Steiner tree using simulated annealing. Comput. Commun. 28(11), 1356–1370 (2005)

    Article  Google Scholar 

  18. Leggieri, V., Haouari, M., Layeb, S., Triki, C. The Steiner tree problem with delays: a compact formulation and reduction procedures. Discret. Appl. Math. (2011, in press)

  19. Miller C.E., Tucker A.W., Zemlin R.A.: Integer programming formulation of traveling salesman problems. J. Assoc. Comput. Mach. 7(4), 326–329 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nemhauser G.L., Wolsey L.A.: Integer and combinatorial optimization. Wiley-Interscience Series in Discrete Mathematics and Optimization. John Wiley & Sons Inc., New York (1988)

    Google Scholar 

  21. Oliveira C.A.S., Pardalos P.M.: A survey of combinatorial optimization problems in multicast routing. Comput. Oper. Res. 32(8), 1953–1981 (2005)

    Article  MATH  Google Scholar 

  22. Oliveira C.A.S., Pardalos P.M.: Construction algorithms and approximation bounds for the streaming cache placement problem in multicast networks. Cybern. Syst. Anal. 41(6), 898–908 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Polzin T., Daneshmand S.V.: A comparison of Steiner tree relaxations. Discret. Appl. Math. J. Comb. Algorithms Inform. Comput. Sci. 112(1–3), 241–261 (2001)

    MathSciNet  MATH  Google Scholar 

  24. Santos M., Drummond L.M.A., Uchoa E.: A distributed dual ascent algorithm for the hop-constrained Steiner tree problem. Oper. Res. Lett. 38(1), 57–62 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sriram R., Manimaran G., Ram Murthy C.S.: Algorithms for delay-constrained low-cost multicast tree construction. Comput. Commun. 21(18), 1693–1706 (1998)

    Article  Google Scholar 

  26. Wolsey L.A.: Integer Programming. Wiley-Interscience, New York (1998)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to V. Leggieri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leggieri, V., Haouari, M. & Triki, C. A branch-and-cut algorithm for the Steiner tree problem with delays. Optim Lett 6, 1753–1771 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: