Optimization Letters

, Volume 5, Issue 3, pp 491–504 | Cite as

Sequencing and scheduling for filling lines in dairy production

  • Torsten Gellert
  • Wiebke HöhnEmail author
  • Rolf H. Möhring
Original Paper


We consider an integrated sequencing and scheduling problem arising at filling lines in dairy industry. Even when a processing sequence is decided, still a scheduling problem has to be solved for the sequence. This incorporates typical side constraints as they occur also in other sequencing problems in practice. Previously, we proposed a framework for general sequencing and scheduling problems: A genetic algorithm is utilized for the sequencing, incorporating a problem specific algorithm for the fixed-sequence scheduling. In this paper, we investigate how this approach performs for filling lines. Based on insights into structural properties of the problem, we propose different scheduling algorithms. In cooperation with Sachsenmilch GmbH, the algorithm was implemented for their bottleneck filling line, and evaluated in an extensive computational study. For the real data from production, our algorithm computes almost optimal solutions. However, as a surprising result, our simple greedy algorithms outperform the more elaborate ones in many aspects, showing interesting directions for future research.


Sequencing Scheduling Dairy production Filling line Setup 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aarts, E., Lenstra, J.K. (eds): Local Search in Combinatorial Optimization. Wiley, Hoboken (1997)zbMATHGoogle Scholar
  2. 2.
    Allahverdi A., Ng C.T., Cheng T.C.E, Kovalyov M.Y.: A survey of scheduling problems with setup times or costs. Eur. J. Oper. Res. 187(3), 985–1032 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Balas E., Simonetti N., Vazacopoulos A.: Job shop scheduling with setup times, deadlines and precedence constraints. J. Sched. 11(4), 253–262 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Dijkstra E.W.: A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Doganis Ph., Sarimveis H.: Optimal production scheduling for the dairy industry. Ann. Oper. Res. 159(1), 315–331 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Estellon B., Gardi F., Nouioua K.: Two local search approaches for solving real-life car sequencing problems. Eur. J. Oper. Res. 191(3), 928–944 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Garey M.R., Johnson D.S.: Computers and intractability. W. H. Freeman, New York (1979)zbMATHGoogle Scholar
  8. 8.
    Helsgaun K.: An effective implementation of the Lin-Kernighan traveling salesman heuristic. Eur. J. Oper. Res. 126(1), 106–130 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Höhn W., König F.G., Lübbecke M.E., Möhring R.H.: Integrated sequencing and scheduling in coil coating. Manage. Sci. 57, 647–666 (2011)zbMATHCrossRefGoogle Scholar
  10. 10.
    Kopanos G.M., Puigjaner L., Georgiadis M.C.: Optimal production scheduling and lot-sizing in dairy plants: The yogurt production line. Ind. Eng. Chem. Res. 49, 701–718 (2010)CrossRefGoogle Scholar
  11. 11.
    Koulamas C., Kyparisis G.J.: Single-machine scheduling problems with past-sequence-dependent setup times. Eur. J. Oper. Res. 187(3), 1045–1049 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Lütke-Entrup M.M., Günther H.-O., van Beek P., Grunow M., Seiler T.: Mixed-integer linear programming approaches to shelf-life-integrated planning and scheduling in yoghurt production. Int. J. Prod. Res. 43(23), 5071–5100 (2005)CrossRefGoogle Scholar
  13. 13.
    Marinelli F., Nenni M.E., Sforza A.: Capacitated lot sizing and scheduling with parallel machines and shared buffers: A case study in a packaging company. Ann. Oper. Res. 150(1), 177–192 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Meloni, C., Naso, D., Turchiano, B.: Multi-objective evolutionary algorithms for a class of sequencing problems in manufacturing environments. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, pp. 8–13 (2003)Google Scholar
  15. 15.
    Mühlenbein H., Gorges-Schleuter M., Krämer O.: Evolution algorithms in combinatorial optimization. Parallel Comput. 7(1), 65–85 (1988)zbMATHCrossRefGoogle Scholar
  16. 16.
    Papadimitriou C.H., Yannakakis M.: The traveling salesman problem with distances one and two. Math. Oper. Res. 18(1), 1–11 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Potts C.N., Kovalyov M.Y.: Scheduling with batching: a review. Eur. J. Oper. Res. 120(2), 228–249 (2000)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Torsten Gellert
    • 1
  • Wiebke Höhn
    • 1
    Email author
  • Rolf H. Möhring
    • 1
  1. 1.Technische Universität BerlinInstitut für MathematikBerlinGermany

Personalised recommendations