Advertisement

Optimization Letters

, Volume 5, Issue 3, pp 515–530 | Cite as

Designing a new computational approach of partial backlogging on the economic production quantity model for deteriorating items with non-linear holding cost under inflationary conditions

  • M. ValliathalEmail author
  • R. Uthayakumar
Original Paper

Abstract

This paper discusses the production inventory model over an infinite time horizon. Here we consider demand as a function of stock and time. Deterioration is a function of time and time-varying production. Our objective is to minimize the total cost which is a function of set up cost, holding cost, shortage cost, and opportunity cost due to lost sales. The traditional costs such as purchasing cost, shortage cost and opportunity cost due to lost sales are kept constant. We consider holding cost to be a non-linear function of time. Shortages are allowed and are partially backlogged. Here, time durations are the decision variables. Numerical examples are given to illustrate the model.

Keywords

Partial backlogging Inflation Deterioration Time-dependent demand Stock-dependent demand 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abad P.L.: Optimal pricing and lot sizing under conditions of perishability and partial backordering. Manag. Sci. 42(8), 1093–1104 (1996)zbMATHCrossRefGoogle Scholar
  2. 2.
    Aggarwal S.P.: A note on an order level inventory model for a system with constant rate of deterioration. Opsearch 15, 184–187 (1978)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Alcali E., Geunes J., Pardalos P.M., Romeijn H.E., Shen Z.J.: Applications of Supply Chain Management and E-commerce Research in Industry. Kluwer Academic Publishers, Dordrecht (2004)Google Scholar
  4. 4.
    Bose S., Goswami A., Chaudhuri K.S.: An EOQ model for deteriorating items with linear time-dependent demand rate and shortages under inflation and time discounting. J. Oper. Res. Soc. 46(6), 771–782 (1995)zbMATHGoogle Scholar
  5. 5.
    Buzacott J.A.: Economic order quantities with inflation. Oper. Res. Q. 26(3), 553–558 (1975)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Chen J.M., Chen L.T.: Pricing and lot-sizing for a deteriorating item in a periodic review inventory system with shortages. J. Oper. Res. Soc. 55(8), 892–901 (2004)zbMATHCrossRefGoogle Scholar
  7. 7.
    Chung K.J., Chu P., Lan S.P.: A note on EOQ models for deteriorating items under stock-determent selling rate. Eur. J. Oper. Res. 124(3), 550–559 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Chung K.J., Ting P.S.: A heuristic for replenishment of deteriorating items with a linear trend in demand. J. Oper. Res. Soc. 44(12), 1235–1241 (1993)zbMATHGoogle Scholar
  9. 9.
    Datta T.K., Pal A.K.: Deterministic inventory systems for deteriorating items with inventory level-dependent demand rate and shortages. Opsearch 27, 213–224 (1990)zbMATHGoogle Scholar
  10. 10.
    Dave U., Patel L.K.: (T, S i) Policy inventory model for deteriorating items with time proportional demand. J. Oper. Res. Soc. 32(2), 137–142 (1981)zbMATHGoogle Scholar
  11. 11.
    Dye C.Y., Ouyang L.Y.: An EOQ model for perishable items under stock-dependent selling rate and time-dependent partial backlogging. Eur. J. Oper. Res. 163(3), 776–783 (2005)zbMATHCrossRefGoogle Scholar
  12. 12.
    Geunes J., Pardalos P.M., Romeijn H.E.: Supply Chain Optimization: Applications and Algorithms. Kluwer Academic Publishers, Dordrecht (2002)Google Scholar
  13. 13.
    Geunes J., Pardalos P.M.: Supply Chain Optimization. Kluwer Academic Publishers, Dordrecht (2003)Google Scholar
  14. 14.
    Ghare P.N., Schrader G.F.: A model for exponentially decaying inventory. J. Ind. Eng. 15, 238–243 (1963)Google Scholar
  15. 15.
    Giri B.C., Chaudhuri K.S.: Deterministic models of perishable inventory with stock-dependent demand rate and non linear holding cost. Eur. J. Oper. Res. 105(3), 467–474 (1998)zbMATHCrossRefGoogle Scholar
  16. 16.
    Goyal S.K., Giri B.C.: Recent trends in modeling of deteriorating inventory. Eur. J. Oper. Res. 134(1), 1–16 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Goyal S.K., Giri B.C.: The production-inventory problem of a product with time varying demand, production and deterioration rates. Eur. J. Oper. Res. 147(3), 549–557 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Haiping U., Wang H.: An economic ordering policy model for deteriorating items with time proportional demand. Eur. J. Oper. Res. 46(1), 21–27 (1990)zbMATHCrossRefGoogle Scholar
  19. 19.
    Hariga M.: Lot sizing models for deteriorating items with time-dependent demand. Int. J. Syst. Sci. 26(12), 2391–2401 (1995)zbMATHCrossRefGoogle Scholar
  20. 20.
    Hariga M.: Optimal EOQ models for deteriorating items with time-varying demand. J. Oper. Res. Soc. 47(10), 1228–1246 (1996)zbMATHGoogle Scholar
  21. 21.
    Hariga M.: Effects of inflation and time value of money on an inventory model with time-dependent demand rate and shortages. Eur. J. Oper. Res. 81(3), 512–520 (1995)zbMATHCrossRefGoogle Scholar
  22. 22.
    Manna S.K., Chaudhuri K.S., Chiang C.: Replenishment policy for EOQ models with time-dependent quadratic demand and shortages. Int. J. Oper. Res. 2(3), 321–337 (2007)zbMATHCrossRefGoogle Scholar
  23. 23.
    Manna S.K., Lee C.C., Chiang C.: EOQ model for non-instantaneous deteriorating items with time-varying demand and partial backlogging. Int. J. Ind. Syst. Eng. 4(3), 241–254 (2009)Google Scholar
  24. 24.
    Migdalas A., Baourakis G., Pardalos P.M.: Supply Chain and Finance. Springer, New York (2004)zbMATHGoogle Scholar
  25. 25.
    Padmanabhan G., Vrat P.: EOQ models for perishable items under stock-dependent selling rate. Eur. J. Oper. Res. 86(2), 281–292 (1995)zbMATHCrossRefGoogle Scholar
  26. 26.
    Pardalos P.M., Tsitsiringos V.: Financial Engineering, Supply Chain and E-commerce. Kluwer Academic Publishers, Dordrecht (2002)Google Scholar
  27. 27.
    Sachan R.S.: On (T, S i) Policy inventory model for deteriorating items with time proportional demand. J. Oper. Res. Soc. 35(11), 1013–1019 (1984)zbMATHGoogle Scholar
  28. 28.
    Sarkar B.R., Jamal A.M.M., Wang S.: Supply chain model for perishable products under inflation and permissible delay in payment. Comput. Oper. Res. 27(1), 59–75 (2000)CrossRefGoogle Scholar
  29. 29.
    Su C.T., Tong L.I., Liao H.C.: An inventory model under inflation for stock dependent consumption rate and exponential decay. Opsearch 33(2), 71–82 (1996)zbMATHGoogle Scholar
  30. 30.
    Wee H.M.: Economic production lot size model for deteriorating items with partial back-ordering. Comput. Ind. Eng. 24(3), 449–458 (1993)CrossRefGoogle Scholar
  31. 31.
    Wee H.M.: A replenishment policy for items with a price-dependent demand and a varying rate of deterioration. Prod. Plan. Control 8(5), 494–499 (1997)CrossRefGoogle Scholar
  32. 32.
    Wee H.M., Law S.T.: Economic production lot size for deteriorating items taking account of the time value of money. Comput. Oper. Res. 26(6), 545–558 (1999)zbMATHCrossRefGoogle Scholar
  33. 33.
    Wu K.S., Ouyang L.Y., Yang C.T.: An optimal replenishment policy for non-instantaneous deteriorating items with stock-dependent demand and partial backlogging. Int. J. Prod. Econ. 101(2), 369–384 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of MathematicsChikkaiah Naicker CollegeErodeIndia
  2. 2.Department of MathematicsGandhigram UniversityGandhigramIndia

Personalised recommendations