Abstract
Maximal monotone operator theory is about to turn (or just has turned) 50. I intend to briefly survey the history of the subject. I shall try to explain why maximal monotone operators are both interesting and important—culminating with a description of the remarkable progress made during the past decade.
Similar content being viewed by others
References
Ahn, B.-H.: Computation of Market Equilibria for Policy Analysis : The Project Independence Evaluation System (PIES) Approach. Models demand especially via (anti) monotone operators. Garland Publishing, New York (1979)
Asplund E.: A monotone convergence theorem for sequences of nonlinear mappings. Proc. Symp. Pure Math. 18, 1–9 (1970)
Asplund E., Rockafellar R.T.: Gradients of convex functions. Trans. Am. Math. Soc. 139, 443–467 (1969)
Bahn, O., Haurie, A., Zachary, D.S.: Mathematical modelling and simulation models in energy systems. Les Cahier de GERAD, G-2004-41, (2004)
Bartz S., Bauschke H.H., Borwein J.M., Reich S., Wang X.: Fitzpatrick functions, cyclic monotonicity and Rockafellar’s antiderivative. Nonlinear Anal. 66, 1198–1223 (2007)
Bauschke H.H., Borwein J.M.: Maximal monotonicity of dense type, local maximal monotonicity, and monotonicity of the conjugate are all the same for continuous linear operators. Pacific J. Math. 189, 1–20 (1999)
Bauschke H.H., Wang X.: The kernel average for two convex functions and its application to extensions and representation of monotone operators. Trans. Am. Math. Soc 361, 5947–5965 (2009)
Borwein J.M.: Maximal monotonicity via convex analysis. J. Conv. Anal. 13, 561–586 (2006)
Borwein, J.M., Lewis, A.S.: Convex Analysis and Nonlinear Optimization. Theory and Examples, CMS Books, vol. 3. Springer, Berlin (2000). Second extended edition (2005)
Borwein J.M., Noll D.: Second order differentiability of convex functions in Banach spaces. Trans. Am. Math. Soc. 342, 43–82 (1994)
Borwein J.M., Reich S., Shafrir I.: Krasnoselski-Mann iterations in normed spaces. Canad. Math. Bull. 35, 21–28 (1992)
Borwein, J.M., Vanderwerff, J.D.: Convex Functions: Constructions, Characterizations and Counterexamples. Encyclopedia of Mathematics and Applications, vol. 109. Cambridge University Press, UK (2010)
Borwein J.M., Zhu Q.: Techniques of Variational Analysis, CMS Books, vol. 20. Springer, Berlin (2005)
Brézis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert (French). North-Holland Mathematics Studies, No. 5. Notas de Matemática (50). North-Holland Publishing Co., Amsterdam, London; Elsevier, New York (1973)
Brézis H., Haraux A.: Image d’une somme d’opŕateurs monotones et applications. (English summary). Israel J. Math. 23, 165–186 (1976)
Browder F.E.: Fixed point theory and nonlinear problems. Bull. Am. Math. Soc. 9, 1–39 (1983)
Browder F.E., Hess P.: Nonlinear mappings of monotone type in Banach spaces. J. Funct. Anal. 11, 251–294 (1972)
Burachik, R.S., Iusem, A.N.: Set-Valued Mappings and Enlargements of Monotone Operators. Springer Optimization and Its Applications, vol. 8. Springer, Berlin (2008)
Combettes P.L., Pesquet J.-C.: A Douglas-Rachford splitting approach to nonsmooth convex variational signal recovery. IEEE J. Select. Topics Signal Process. 1, 564–574 (2007)
Deimling K.: Nonlinear Functional Analysis. Springer, Berlin (1985)
Eckstein J., Bertsekas D.P.: On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55, 293–318 (1992)
Fitzpatrick S.: Representing monotone operators by convex functions. Proc. Centre Math. Anal. Austral. Nat. Univ. 20, 59–65 (1988)
Fitzpatrick S., Phelps R.R.: Bounded approximants to monotone operators on Banach spaces. Ann. Inst. Henri Poincaré, Analyse non linéaire 9, 573–595 (1992)
Fort M.K. Jr: Points of continuity of semi-continuous functions. Publ. Math. Debrecen 2, 100–102 (1951)
Fortin, M., Glowinski, R. (eds): Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems. North-Holland Publishing Co., Amsterdam (1983)
Franssen, H.T.: Towards project independence: energy in the coming decade. Prepared for the Joint Committee on Atomic Energy, United States Congress, OSTI ID: 7283709. Library of Congress, Congressional Research Service, Ocean and Coastal Resources Project (1975)
Glowinski, R., Le Tallec, P.: Augmented Lagrangian and Operator-splitting Methods in Nonlinear Mechanics. SIAM, USA (1989)
Gossez J.-P.: Opérateurs monotones non linaires dans les espaces de Banach non réflexifs. J. Math. Anal. Appl. 34, 371–376 (1971)
Gulevich N.M.: Fixed points of nonexpansive mappings. J. Math. Sci. 79, 765–815 (1996)
Kenderov P.S.: Semi-continuity of set-valued monotone mappings. Fund. Math. 88, 61–69 (1975)
Kenderov P.S.: Monotone operators in Asplund spaces. C.R. Acad. Bulgare Sci. 30, 963–964 (1977)
Kartsatos A.G., Skrypnik I.V.: On the eigenvalue problem for perturbed nonlinear maximal monotone operators in reflexive Banach spaces. Trans. Am. Math. Soc. 358, 3851–3881 (2006)
Mignot F.: Contrôle dans les inéquations variationelles elliptiques. J. Funct. Anal. 22, 130–185 (1976)
Minty G.J.: Monotone Networks. Proc. Roy Soc. Lond. 257, 194–212 (1960)
Minty G.J.: Monotone (nonlinear) operators in Hilbert space. Duke Math. J. 29, 341–346 (1962)
Minty G.J.: On the monotonicity of the gradient of a convex function. Pacific J. Math. 14, 243–247 (1964)
Minty, G.J.: On some aspects of the theory of monotone operators. In: Theory and Application of Monotone Operators (Proceedings of NATO Advanced Study Institute, Venice, 1968), pp. 67–82 (1969)
Musev, B., Ribarska, N.: On a question of J. Borwein and H. Wiersma. Preprint (2009)
Phelps, R.R.: Convex Functions, Monotone Operators and Differentiability. Lecture Notes in Mathematics, vol. 1364. Springer, Berlin (1989). Second edition 1993
Preiss D., Phelps R.R., Namioka I.: Smooth Banach spaces, weak Asplund spaces and monotone or usco mappings. Israel J. Math. 72, 257–279 (1990)
Rockafellar R.T.: On the maximal monotonicity of subdifferential mappings. Pacific J. Math. 33, 209–216 (1970)
Rockafellar R.T.: On the maximality of sums of nonlinear monotone operators. Trans. Am. Math. Soc. 149, 75–88 (1970)
Rockafellar R.T.: Convex Analysis. Princeton University Press, USA (1970)
Rockafellar R.T.: On the virtual convexity of the domain and range of a nonlinear maximal monotone operator. Math. Ann. 185, 81–90 (1970)
Rockafellar R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)
Simons S.: Minimax and Monotonicity. Lecture Notes in Mathematics, vol. 1693. Springer, Berlin (1998)
Simons S.: Minimax and Monotonicity. Lecture Notes in Mathematics, vol. 1693, 2nd edition: Renamed From Hahn-Banach to Monotonicity. Springer, Berlin (2008)
Simons, S.: Banach SSD spaces and classes of monotone sets. http://arxiv/org/abs/0908.0383v2 posted 26 August (2009)
Spingarn J.E.: Partial inverse of a monotone operator. Appl. Math. Optim. 10, 247–265 (1983)
Tseng P.: Applications of a splitting algorithm to decomposition in convex programming and variational inequalities. SIAM J. Control Optim. 29, 119–138 (1991)
Zarantonello, E.H.: Projections on Convex Sets in Hilbert Space and Spectral Theory I Projections on Convex Sets. In: Contributions to Nonlinear Functional Analysis. Academic Press, Dublin (1971)
Zarantonello, E.H. (eds): Contributions to Nonlinear Functional Analysis. Academic Press, Dublin 237–341 (1971)
Zarantonello E.H.: Dense single-valuedness of monotone operators. Israel J. Math. 15, 158–166 (1973)
Zeidler E.: Nonlinear Functional Analysis and its Applications: Part 2 A: Linear Monotone Operators and Part 2 B: Nonlinear Monotone Operators. Springer, Berlin (1990)
Author information
Authors and Affiliations
Corresponding author
Additional information
J. M. Borwein’s research supported by the Australian Research Council.
Rights and permissions
About this article
Cite this article
Borwein, J.M. Fifty years of maximal monotonicity. Optim Lett 4, 473–490 (2010). https://doi.org/10.1007/s11590-010-0178-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11590-010-0178-x