Skip to main content
Log in

Fifty years of maximal monotonicity

  • Review Article
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

Maximal monotone operator theory is about to turn (or just has turned) 50. I intend to briefly survey the history of the subject. I shall try to explain why maximal monotone operators are both interesting and important—culminating with a description of the remarkable progress made during the past decade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahn, B.-H.: Computation of Market Equilibria for Policy Analysis : The Project Independence Evaluation System (PIES) Approach. Models demand especially via (anti) monotone operators. Garland Publishing, New York (1979)

  2. Asplund E.: A monotone convergence theorem for sequences of nonlinear mappings. Proc. Symp. Pure Math. 18, 1–9 (1970)

    MathSciNet  Google Scholar 

  3. Asplund E., Rockafellar R.T.: Gradients of convex functions. Trans. Am. Math. Soc. 139, 443–467 (1969)

    MATH  MathSciNet  Google Scholar 

  4. Bahn, O., Haurie, A., Zachary, D.S.: Mathematical modelling and simulation models in energy systems. Les Cahier de GERAD, G-2004-41, (2004)

  5. Bartz S., Bauschke H.H., Borwein J.M., Reich S., Wang X.: Fitzpatrick functions, cyclic monotonicity and Rockafellar’s antiderivative. Nonlinear Anal. 66, 1198–1223 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bauschke H.H., Borwein J.M.: Maximal monotonicity of dense type, local maximal monotonicity, and monotonicity of the conjugate are all the same for continuous linear operators. Pacific J. Math. 189, 1–20 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bauschke H.H., Wang X.: The kernel average for two convex functions and its application to extensions and representation of monotone operators. Trans. Am. Math. Soc 361, 5947–5965 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Borwein J.M.: Maximal monotonicity via convex analysis. J. Conv. Anal. 13, 561–586 (2006)

    MATH  Google Scholar 

  9. Borwein, J.M., Lewis, A.S.: Convex Analysis and Nonlinear Optimization. Theory and Examples, CMS Books, vol. 3. Springer, Berlin (2000). Second extended edition (2005)

  10. Borwein J.M., Noll D.: Second order differentiability of convex functions in Banach spaces. Trans. Am. Math. Soc. 342, 43–82 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  11. Borwein J.M., Reich S., Shafrir I.: Krasnoselski-Mann iterations in normed spaces. Canad. Math. Bull. 35, 21–28 (1992)

    MATH  MathSciNet  Google Scholar 

  12. Borwein, J.M., Vanderwerff, J.D.: Convex Functions: Constructions, Characterizations and Counterexamples. Encyclopedia of Mathematics and Applications, vol. 109. Cambridge University Press, UK (2010)

  13. Borwein J.M., Zhu Q.: Techniques of Variational Analysis, CMS Books, vol. 20. Springer, Berlin (2005)

    Google Scholar 

  14. Brézis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert (French). North-Holland Mathematics Studies, No. 5. Notas de Matemática (50). North-Holland Publishing Co., Amsterdam, London; Elsevier, New York (1973)

  15. Brézis H., Haraux A.: Image d’une somme d’opŕateurs monotones et applications. (English summary). Israel J. Math. 23, 165–186 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  16. Browder F.E.: Fixed point theory and nonlinear problems. Bull. Am. Math. Soc. 9, 1–39 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  17. Browder F.E., Hess P.: Nonlinear mappings of monotone type in Banach spaces. J. Funct. Anal. 11, 251–294 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  18. Burachik, R.S., Iusem, A.N.: Set-Valued Mappings and Enlargements of Monotone Operators. Springer Optimization and Its Applications, vol. 8. Springer, Berlin (2008)

  19. Combettes P.L., Pesquet J.-C.: A Douglas-Rachford splitting approach to nonsmooth convex variational signal recovery. IEEE J. Select. Topics Signal Process. 1, 564–574 (2007)

    Article  Google Scholar 

  20. Deimling K.: Nonlinear Functional Analysis. Springer, Berlin (1985)

    MATH  Google Scholar 

  21. Eckstein J., Bertsekas D.P.: On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55, 293–318 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  22. Fitzpatrick S.: Representing monotone operators by convex functions. Proc. Centre Math. Anal. Austral. Nat. Univ. 20, 59–65 (1988)

    MathSciNet  Google Scholar 

  23. Fitzpatrick S., Phelps R.R.: Bounded approximants to monotone operators on Banach spaces. Ann. Inst. Henri Poincaré, Analyse non linéaire 9, 573–595 (1992)

    MATH  MathSciNet  Google Scholar 

  24. Fort M.K. Jr: Points of continuity of semi-continuous functions. Publ. Math. Debrecen 2, 100–102 (1951)

    MATH  MathSciNet  Google Scholar 

  25. Fortin, M., Glowinski, R. (eds): Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems. North-Holland Publishing Co., Amsterdam (1983)

    MATH  Google Scholar 

  26. Franssen, H.T.: Towards project independence: energy in the coming decade. Prepared for the Joint Committee on Atomic Energy, United States Congress, OSTI ID: 7283709. Library of Congress, Congressional Research Service, Ocean and Coastal Resources Project (1975)

  27. Glowinski, R., Le Tallec, P.: Augmented Lagrangian and Operator-splitting Methods in Nonlinear Mechanics. SIAM, USA (1989)

  28. Gossez J.-P.: Opérateurs monotones non linaires dans les espaces de Banach non réflexifs. J. Math. Anal. Appl. 34, 371–376 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  29. Gulevich N.M.: Fixed points of nonexpansive mappings. J. Math. Sci. 79, 765–815 (1996)

    Article  MathSciNet  Google Scholar 

  30. Kenderov P.S.: Semi-continuity of set-valued monotone mappings. Fund. Math. 88, 61–69 (1975)

    MATH  MathSciNet  Google Scholar 

  31. Kenderov P.S.: Monotone operators in Asplund spaces. C.R. Acad. Bulgare Sci. 30, 963–964 (1977)

    MATH  MathSciNet  Google Scholar 

  32. Kartsatos A.G., Skrypnik I.V.: On the eigenvalue problem for perturbed nonlinear maximal monotone operators in reflexive Banach spaces. Trans. Am. Math. Soc. 358, 3851–3881 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  33. Mignot F.: Contrôle dans les inéquations variationelles elliptiques. J. Funct. Anal. 22, 130–185 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  34. Minty G.J.: Monotone Networks. Proc. Roy Soc. Lond. 257, 194–212 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  35. Minty G.J.: Monotone (nonlinear) operators in Hilbert space. Duke Math. J. 29, 341–346 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  36. Minty G.J.: On the monotonicity of the gradient of a convex function. Pacific J. Math. 14, 243–247 (1964)

    MATH  MathSciNet  Google Scholar 

  37. Minty, G.J.: On some aspects of the theory of monotone operators. In: Theory and Application of Monotone Operators (Proceedings of NATO Advanced Study Institute, Venice, 1968), pp. 67–82 (1969)

  38. Musev, B., Ribarska, N.: On a question of J. Borwein and H. Wiersma. Preprint (2009)

  39. Phelps, R.R.: Convex Functions, Monotone Operators and Differentiability. Lecture Notes in Mathematics, vol. 1364. Springer, Berlin (1989). Second edition 1993

  40. Preiss D., Phelps R.R., Namioka I.: Smooth Banach spaces, weak Asplund spaces and monotone or usco mappings. Israel J. Math. 72, 257–279 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  41. Rockafellar R.T.: On the maximal monotonicity of subdifferential mappings. Pacific J. Math. 33, 209–216 (1970)

    MATH  MathSciNet  Google Scholar 

  42. Rockafellar R.T.: On the maximality of sums of nonlinear monotone operators. Trans. Am. Math. Soc. 149, 75–88 (1970)

    MATH  MathSciNet  Google Scholar 

  43. Rockafellar R.T.: Convex Analysis. Princeton University Press, USA (1970)

    MATH  Google Scholar 

  44. Rockafellar R.T.: On the virtual convexity of the domain and range of a nonlinear maximal monotone operator. Math. Ann. 185, 81–90 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  45. Rockafellar R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  46. Simons S.: Minimax and Monotonicity. Lecture Notes in Mathematics, vol. 1693. Springer, Berlin (1998)

    Google Scholar 

  47. Simons S.: Minimax and Monotonicity. Lecture Notes in Mathematics, vol. 1693, 2nd edition: Renamed From Hahn-Banach to Monotonicity. Springer, Berlin (2008)

    Google Scholar 

  48. Simons, S.: Banach SSD spaces and classes of monotone sets. http://arxiv/org/abs/0908.0383v2 posted 26 August (2009)

  49. Spingarn J.E.: Partial inverse of a monotone operator. Appl. Math. Optim. 10, 247–265 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  50. Tseng P.: Applications of a splitting algorithm to decomposition in convex programming and variational inequalities. SIAM J. Control Optim. 29, 119–138 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  51. Zarantonello, E.H.: Projections on Convex Sets in Hilbert Space and Spectral Theory I Projections on Convex Sets. In: Contributions to Nonlinear Functional Analysis. Academic Press, Dublin (1971)

  52. Zarantonello, E.H. (eds): Contributions to Nonlinear Functional Analysis. Academic Press, Dublin 237–341 (1971)

    MATH  Google Scholar 

  53. Zarantonello E.H.: Dense single-valuedness of monotone operators. Israel J. Math. 15, 158–166 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  54. Zeidler E.: Nonlinear Functional Analysis and its Applications: Part 2 A: Linear Monotone Operators and Part 2 B: Nonlinear Monotone Operators. Springer, Berlin (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan M. Borwein.

Additional information

J. M. Borwein’s research supported by the Australian Research Council.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borwein, J.M. Fifty years of maximal monotonicity. Optim Lett 4, 473–490 (2010). https://doi.org/10.1007/s11590-010-0178-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-010-0178-x

Keywords

Navigation