Skip to main content

Effects of sedimentary layer on earthquake source modeling from geodetic inversion

Abstract

Ground deformation as observed with GPS or InSAR has been broadly inverted in constraining source parameter of earthquakes. However, for earthquakes occurring beneath sedimentary basins, the very slow sub-surface shear velocity (vS, down to 200 m/s) may cause substantial bias to earthquake source inversion if simple crustal models are used. For Bohai basin, Sichuan basin and rock-sites, we test effects of sub-surface shear velocity structure on ground deformation, and find that up to a factor of 2 overestimate of seismic moment could be generated by the basin structures. Therefore, the very slow sub-surface velocity has to be taken into account before accurate source inversion can be applied.

References

  • Aki K and Lee W H K (1976). Determination of three-dimensional velocity anamalies under a seismic array using first P wave arrival times from local earthquakes: A homogeneous initial model. J Geophys Res81: 4 381–4 399.

    Article  Google Scholar 

  • Arnadottir T (1995). Earthquake dislocation models derived from inversion of geodetic data. [Ph D Dissertation] Stanford Univ., Standford, Calif., 139.

    Google Scholar 

  • Calais E, Freed A, Mattioli G, Amelung F, Jonsson S, Jansma P, Hong S, Dixon T, Prepetit C and Mompaisir R (2010). Transpressional rupture of an unmapped fault during the 2010 Haiti earthquake. Nature Geosci3: 794–799.

    Article  Google Scholar 

  • Dawson J, Cummins P, Tregoning P and Leonard M (2008). Shallow intraplate earthquakes in Western Australia observed by Interferometric Synthetic Aperture Radar. J Geophys Res113: B11408.

    Article  Google Scholar 

  • Douglas A (1967). Joint epicenter determination. Nature215: 45–48.

    Article  Google Scholar 

  • Dziewonski A M, Chou T A and Woodhouse J H (1981). Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. J Geophys Res86: 2 825–2 852.

    Article  Google Scholar 

  • Engdahl E R, Rob V H and Raymond B (1998). Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bull Seismol Soc Am88(3): 722–743.

    Google Scholar 

  • Feng C C and Teng T C (1983). Three-dimensional crust and uppermantle structure of the Eurasian continent. J Geophys Res88: 2 261–2 272.

    Article  Google Scholar 

  • Hauksson E, Teng T L and Henry T L (1987). Results from a 1 500 m deep three-level downhole seismometer array: Site response, low Q values and fmax, Bull Seismol Soc Am77(6): 1883–1904.

    Google Scholar 

  • Kanamori H and Given J W (1981). Use of long period surface waves for rapid determination of the earthquake source parameters. Phys Earth Planet Interi27: 8–31.

    Article  Google Scholar 

  • Langston C A (1979). Structure under Mount Rainer, Washington, inferred from teleseismic body waves. J Geophys Res84: 4 749–4 762.

    Article  Google Scholar 

  • Luo Y, Ni S D, Zeng X F, Zheng Y, Chen Q F and Chen Y (2010). A shallow aftershock sequence in the northeastern end of the Wenchuan earthquake aftershock zone. Science in China (Series D) 53(1): 54–63.

    Article  Google Scholar 

  • Massonnet D, Rossi M, Carmona C, Adragna F, Peltzer G, Feigl K and Rabaute T (1993). The displacement field of the Landers earthquake mapped by radar interferometry. Nature364: 138–142.

    Article  Google Scholar 

  • Okada Y (1992). Internal deformation due to shear and tensile faults in a half-space. Bull Seismol Soc Am82: 1 018–1 040.

    Google Scholar 

  • Owens T J, Taylar S R and Landt G (1984). Seismic evidence for an ancient rift beneath the Camberland Plateau Tennessee. A detailed analysis of broadband teleseismic P waveforms. J Geophys Res89: 7 783–7 795.

    Article  Google Scholar 

  • Rybicki K (1971). The elastic residual field of a very long strike-slip fault in the presence of a discontinuity. Bull Seismol Soc Am61: 79–92.

    Google Scholar 

  • Shen W, Luo Y, Ni S, Chong J and Chen Y (2010). Resolving near surface S velocity structure in natural earthquake frequency band: A case study in Beijing region. Acta Seismologica Sinica32(2): 137–146.

    Google Scholar 

  • Spence W (1980). Relative epicenter determination using P wave arrival time differences. Bull Seismol Soc Am70(1): 171–183.

    Google Scholar 

  • Stramondo S, Moro M, Tolomei C, Cinti F R and Doumaz F (2005). InSAR surface displacement field and fault modeling for the 2003 Bam earthquake (southeastern Iran). J Geodynamics40: 347–353.

    Article  Google Scholar 

  • Takeo M (1987). An inversion method to analyze the rupture processes of earthquakes using near field seismogram. Bull Seismol Soc Am77: 490–513.

    Google Scholar 

  • Wald D J and Graves R W (2001). Resolution analysis of finite fault source inversion using one-and three-dimensional Green’s functions 2. Combining seismic and geodetic data. J Geophys Res106(B5): 8 767–8 788.

    Article  Google Scholar 

  • Waldhanser F and Ellsworth W L (2000). A double difference earthquake location algorithm: Method and application to the Northern Hayward Fault California. Bull Seismol Soc Am90(6): 1 353–1 368.

    Article  Google Scholar 

  • Wang R J, Martin F L and Roth F (2003). Computation of deformation induced by earthquakes in a multi-layered elastic crust-FORTRAN programs EDGRN/EDCMP. Computers and Geosciences29: 195–207.

    Article  Google Scholar 

  • Zhang H, Wang C, Shan X, Ma J, Tang Y and Guo Z (2002). Focal mechanism analysis and parameter estimation of Zhangbei-Shangyi earthquake from differential SAR interferometry. Chinese Science Bulletin47(4): 334–336.

    Article  Google Scholar 

  • Zhang X (2005). The general statement on shear wave velocity structure research methods. Progress in Geophysics20(1): 135–141 (in Chinese with English abstract).

    Google Scholar 

  • Zhu L P and Helmberger D V (1996). Advancement in source Estimation techniques using broadband regional seismograms. Bull Seismol Soc Am86(5): 1 634–1 641.

    Google Scholar 

  • Zhuang Z, Teng T L and Chao C H (1984). Error analysis and damping factor estimation for grid dispersion inversion in surface wave study. Eos Trans Am Geophys Un, 65: S52b–12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sidao Ni.

About this article

Cite this article

Chen, W., Ni, S., Wei, S. et al. Effects of sedimentary layer on earthquake source modeling from geodetic inversion. Earthq Sci 24, 221–227 (2011). https://doi.org/10.1007/s11589-010-0786-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11589-010-0786-7

Key words

  • sedimentary layer
  • ground deformation
  • InSAR
  • GPS

CLC number

  • P315.3+3