Earthquake Science

, Volume 23, Issue 5, pp 417–424 | Cite as

Seismic interferometry and estimation of the Green’s function using Gaussian beams



This study investigates seismic interferometry in which the Green’s function is estimated between two receivers by cross-correlation and integration over sources. For smoothly varying source strengths, the dominant contributions of the correlation integral come from the stationary phase directions in the forward and backward directions from the alignment of the two receivers. Gaussian beams can be used to evaluate the correlation integral and concentrate the amplitudes in a vicinity of the stationary phase regions instead of completely relying on phase interference. Several numerical examples are shown to illustrate how this process works. The use of Gaussian beams for the evaluation of the correlation integral results in stable estimates, and also provides physical insight into the estimation of the Green’s function based on seismic interferometry.

Key words

seismic interferometry Gaussian beams Green’s function 

CLC number



  1. Aki K (1957). Space and time spectra of stationary stochastic waves with special reference to microtremors. Bull Earthquake Res Inst35: 415–456.Google Scholar
  2. Bakulin A and Calvert R (2006). The virtual source method: theory and case study. Geophysics71: SI139–SI150.CrossRefGoogle Scholar
  3. Bensen G, Ritzwoller M H, Barmin M P, Levshin A L, Lin F, Moschetti M P, Shapiro N M and Yang Y (2007). Processing seismic ambient noise data to obtain reliable broadband surface wave dispersion measurements. Geophys J Int169: 1 239–1 260.CrossRefGoogle Scholar
  4. Campillo M and Paul A (2003). Long-range correlations in the diffuse seismic coda. Science299: 547–549.CrossRefGoogle Scholar
  5. Cerveny V (2001). Seismic Ray Theory. Cambridge University Press, Cambridge, 713 pp.CrossRefGoogle Scholar
  6. Cerveny V, Klimes L and Psencík I (2007). Seismic ray theory: Recent developments. Advances in Geophysics48: 1–126.CrossRefGoogle Scholar
  7. Cerveny V, Popov M M and Psencík I (1982). Computation of wavefields in inhomogeneous media — Gaussian beam approach. Geophys J R astr Soc70: 109–128.CrossRefGoogle Scholar
  8. Claerbout J F (1968). Synthesis of a layered medium from its acoustic transmission response. Geophysics33: 264–269.CrossRefGoogle Scholar
  9. Derode A, Larose E, Tanter M, de Rosny J, Tourin A, Campillo M and Fink M (2003). Recovering the Green’s function from field-field correlations in an open scattering medium. J Acoust Soc Am113: 2 973–2 976.CrossRefGoogle Scholar
  10. Fan Y and Snieder R (2009). Required source distribution for interferometry of waves and diffusive fields. Geophys J Int179: 1 232–1 244.CrossRefGoogle Scholar
  11. Gerstoft P and Tanimoto T (2007). A year of micoseisms in southern California. Geophys Res Lett34: L20304, doi:10.1029/2007Gl031091.CrossRefGoogle Scholar
  12. Gerstoft P, Fehler M C and Sabra K G (2006). When Katrina hit California. Geophys Res Lett33: L17308, doi:10.1029/2006GL027270.CrossRefGoogle Scholar
  13. Gouedard P, Cornou C and Roux P (2008). Phase-velocity dispersion curves and small-scale geophysics using noise correlation slantstack technique. Geophys J Int172: 971–981.CrossRefGoogle Scholar
  14. Kimman W P and Trampert J (2010). Approximations in seismic interferometry and their effects on surface waves. Geophys J Int182: 461–476.Google Scholar
  15. Koper K D, de Foy B and Benz H (2009). Composition and variation of noise at the Yellowknife seismic array. J Geophys Res114: B10310, doi:10.1029/2009JB006307.CrossRefGoogle Scholar
  16. Larose E (2005). Multiple Scattering of Seismic Waves and Analogous Ultrasonic Experiment. PhD thesis, LGIT, l’Universite Joseph Fourier, Grenoble, France, 196 pp.Google Scholar
  17. Lobkis O I and Weaver R L (2001). On the emergence of the Green’s function in the correlations of a diffuse field. J Acoust Soc Am110: 3 011–3 017.CrossRefGoogle Scholar
  18. Mehta K, Bakulin A, Sheiman J, Calvert R and Snieder R (2007). Improving the virtual source method by wavefield separation. Geophysics72: V79–V86.CrossRefGoogle Scholar
  19. Mehta K, Snieder R, Calvert R and Sheiman J (2008). Acquisition geometry requirements for generating virtual source data. The Leading Edge27(5): 620–629.CrossRefGoogle Scholar
  20. Nowack R L (2003). Calculation of synthetic seismograms with Gaussian beams. Pure Appl Geophys160: 487–507.CrossRefGoogle Scholar
  21. Nowack R L and Aki K (1984). The two-dimensional Gaussian beam synthetic method: testing and application. J Geophys Res89: 7 797–7 819.CrossRefGoogle Scholar
  22. Popov M M (1982). A new method of computation of wave fields using Gaussian beams. Wave Motion4: 85–97.CrossRefGoogle Scholar
  23. Popov M M (2002). Ray Theory and Gaussian Beam Method for Geophysicists. Lecture notes, University of Bahia, Salavdor Brazil, 156 pp.Google Scholar
  24. Prieto G A, Lawrence J F and Beroza G C (2009). Anelastic Earth structure from the coherency of the ambient noise field. J Geophys Res114: B07303, doi: 10.1029/2008JB006067.Google Scholar
  25. Rickett J and Claerbout J (1999). Acoustic daylight imaging via spectral factorization: helioseismology and reservoir monitoring. The Leading Edge18: 957–960.CrossRefGoogle Scholar
  26. Rost S and Thomas C (2002). Array seismology: methods and applications. Rev Geophys40(3): 1008, doi:10.1029/2000RG000100.CrossRefGoogle Scholar
  27. Roux P, Sabra K G, Gerstoft P, Kuperman W A and Fehler M (2005). P-waves from cross correlation of seismic noise. Geophys Res Lett32: L19303, doi:10.1029/2005GL023803.CrossRefGoogle Scholar
  28. Roux P, Sabra K G, Kuperman W A and Roux A (2005). Ambient noise cross correlation in free space: theoretical approach. J Acoust Soc Am117: 79–84.CrossRefGoogle Scholar
  29. Sabra K G, Roux P, Gerstoft P, Kuperman W A and Fehler M C (2005a). Extracting time-domain Green’s function estimates from ambient seismic noise. Geophys Res Lett32: L03310.CrossRefGoogle Scholar
  30. Sabra K G, Roux P, Gerstoft P, Kuperman W A and Fehler M C (2005b). Surface wave tomography from microseisms in southern California. Geophys Res Lett32: L14311.CrossRefGoogle Scholar
  31. Schuster G T (2009). Seismic Interferometry. Cambridge University Press, Cambridge, 260 pp.CrossRefGoogle Scholar
  32. Schuster G T, Yu J, Sheng J and Rickett J (2004). Interferometric/daylight seismic imaging. Geophys J Int157: 838–852.CrossRefGoogle Scholar
  33. Shapiro N M, Ritzwoller M H and Benson G D (2005). High-resolution surface-wave tomography from ambient noise. Science307: L03310.CrossRefGoogle Scholar
  34. Snieder R (2004). Extracting the Green’s function from the correlation of coda waves: a derivation based on stationary phase. Phys Rev E69: 046610.CrossRefGoogle Scholar
  35. Snieder R, Miyazawa M, Slob E, Vasconcelos I and Wapenaar K (2009). A comparison of strategies for seismic interferometry. Surv Geophys30: 503–523.CrossRefGoogle Scholar
  36. Stehly L, Campillo M and Shapiro N (2006). A study of the seismic noise from its long range correlation properties. J Geophys Res111: B10306, doi:10.1029/2005JB004237.CrossRefGoogle Scholar
  37. Wapenaar K (2004). Retrieving the elastodynamic Green’s function of an arbitrary inhomogeneous medium by cross correlation. Phys Res Lett93: 254301.CrossRefGoogle Scholar
  38. Wapenaar K, Draganov D and Robertsson J O A eds (2008). Seismic Interferometry: History and Present Status. Society of Exploration Geophysicists (SEG), Tulsa OK, 628 pp.Google Scholar
  39. Wapenaar K, Fokkema J and Snieder R (2005). Retrieving the Green’s function by cross-correlation: A comparison of approaches. J Acoust Soc Am118: 2 783–2 786.CrossRefGoogle Scholar
  40. Weaver R and Lobkis O I (2001). Ultrasonics without a source Thermal fluctuation correlations at MHz frequencies. Phys Rev Lett87: 134301.CrossRefGoogle Scholar
  41. Weaver R, Froment B and Campillo M (2009). On the correlation of non-isotropically distributed ballistic scalar diffuse waves. J Acoust Soc Am126: 1 817–1 826.CrossRefGoogle Scholar
  42. Yang Y and Ritzwoller M H (2008). Characteristics of ambient noise as a source for surface wave tomography. Geochem Geophys Geosyst9: Q02008, doi:10.1029/2007GC001814.CrossRefGoogle Scholar
  43. Yao H and van der Hilst R (2009). Analysis of ambient noise energy distribution and phase velocity bias in ambient noise tomography with application to SE Tibet. Geophys J Int179: 1 113–1 132.CrossRefGoogle Scholar
  44. Yao H, Campman X, de Hoop M V and van der Hilst R (2009). Estimation of surface wave Green’s functions from correlation of direct waves, coda waves and ambient noise in SE Tibet. Phys Earth Planet Int177: 1–11.CrossRefGoogle Scholar

Copyright information

© The Seismological Society of China and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Earth and Atmospheric SciencesPurdue UniversityWest LafayetteUSA

Personalised recommendations