Advertisement

Earthquake Science

, Volume 23, Issue 2, pp 121–127 | Cite as

A scheme to treat the singularity in global seismic wavefield simulation using pseudospectral method with staggered grids

  • Yanbin WangEmail author
  • Hiroshi Takenaka
Article

Abstract

The pseudospectral method has been applied to the simulation of seismic wave propagation in 2-D global Earth model. When a whole Earth model is considered, the center of the Earth is included in the model and then singularity arises at the center of the Earth where r = 0 since the 1/r term appears in the wave equations. In this paper, we extended the global seismic wavefield simulation algorithm for regular grid mesh to staggered grid configuration and developed a scheme to solve the numerical problems associated with the above singularity for a 2-D global Earth model defined on staggered grid using pseudospectral method. This scheme uses a coordinate transformation at the center of the model, in which the field variables at the center are calculated in Cartesian coordinates from the values on the grids around the center. It allows wave propagation through the center and hence the wavefield at the center can be stably calculated. Validity and accuracy of the scheme was tested by compared with the discrete wavenumber method. This scheme could also be suitable for other numerical methods or models parameterized in cylindrical or spherical coordinates when singularity arises at the center of the model.

Key words

seismic modeling wave propagation whole Earth pseudospectral method staggered grid 

CLC number

P315.01 

References

  1. Bouchon M and Aki K (1977). Discrete wave-number representation of seismic source wave fields. Bull Seis Soc Amer 67: 259–277.Google Scholar
  2. Cummins P R, Geller R J, Hatori T and Takeuchi N (1994a). DSM complete synthetic seismograms: SH, spherically symmetric case. Geophys Res Lett 21: 533–536.CrossRefGoogle Scholar
  3. Cummins P R, Geller R J and Takeuchi N (1994b). DSM complete synthetic seismograms: P-SV, spherically symmetric case. Geophys Res Lett 21: 1 663–1 666.CrossRefGoogle Scholar
  4. Furumura T, Kennett B L N and Furumura M (1998). Seismic wavefield calculation for laterally heterogeneous whole Earth models using the pseudospectral method. Geophys J Int 135: 845–860.CrossRefGoogle Scholar
  5. Herrmann R B (1979). SH-wave generation by dislocation source — a numerical study. Bull Seis Soc Amer 69: 1–15.Google Scholar
  6. Igel H and Gudmundsson O (1997). Frequency-dependent effects on travel times and waveforms of long-period S and SS waves. Phys Earth Planet Inter 104: 229–246.CrossRefGoogle Scholar
  7. Igel H and Weber M (1995). SH-wave propagation in the whole mantle using high-order finite differences. Geophys Res Lett 22: 731–734.CrossRefGoogle Scholar
  8. Igel H and Weber M (1996). P-SV wave propagation in the Earth’s mantle using finite differences: application to heterogeneous lowermost mantle structure. Geophys Res Lett 23: 415–418.CrossRefGoogle Scholar
  9. Jahnke G, Thorne M S, Cochard A and Igel H (2008). Global SH-wave propagation using a parallel axisymmetric spherical finite-difference scheme: application to whole mantle scattering. Geophys J Int 173: 815–826, doi: 10.1111/j.1365-246X.2008.03744.x.CrossRefGoogle Scholar
  10. Komatitsch D and Tromp J (2002). Spectral-element simulations of global seismic wave propagation — I. Validation. Geophys J Int 149: 390–412.CrossRefGoogle Scholar
  11. Nissen-Meyer T, Fournier A and Dahlen F A (2008). A 2-D spectral-element method for computing spherical-earth seismograms — II. Waves in solid-fluid media. Geophys J Int 174: 873–888, doi:10.1111/j.1365-246X.2008.03813.x.CrossRefGoogle Scholar
  12. Özdenvar T and McMechan G A (1996). Causes and reduction of numerical artefacts in pseudo-spectral wavefield extrapolation. Geophys J Int 126: 819–828.CrossRefGoogle Scholar
  13. Toyokuni G, Takenaka H, Wang Y and Kennett B L N (2005). Quasispherical approach for seismic wave modeling in a 2-D slice of a global earth model with lateral heterogeneity. Geophys Res Lett 32: L09305, doi:10.1029/2004 6L022180.CrossRefGoogle Scholar
  14. Wang Y B and Takenaka H (2001). A multidomain approach of the Fourier pseudospectral method using discontinuous grid for elastic wave modeling. Earth Planets Space 53: 149–158.CrossRefGoogle Scholar
  15. Wang Y B, Takenaka H and Furumura T (2001). Modelling seismic wave propagation in a two-dimensional cylindrical whole-earth model using the pseudospectral method. Geophys J Int 145: 689–708.CrossRefGoogle Scholar
  16. Yan Z Z, Zhang H, Yang C C and Shi Y L (2009). Spectral element analysis on the characteristics of seismic wave propagation triggered by Wenchuan M S8.0 earthquake. Science in China (Series D) 52: 764–773.CrossRefGoogle Scholar
  17. Zhao Z X, Xu J R and Horiuchi S (2001). Differentiation operation in the wave equation for the pseudospectral method with a staggered mesh. Earth Planets Space 53: 327–332.CrossRefGoogle Scholar

Copyright information

© The Seismological Society of China and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Geophysics, School of Earth and Space SciencesPeking UniversityBeijingChina
  2. 2.Department of Earth and Planetary SciencesKyushu UniversityFukuokaJapan

Personalised recommendations