Skip to main content

Implication of fault interaction to seismic hazard assessment in Sichuan-Yunnan provinces of southeastern China

Abstract

Coulomb stress changes associated with the strong earthquakes that occurred since 1904 in Sichuan and Yunnan provinces of China are investigated. The study area comprises the most active seismic fault zones in the Chinese mainland and suffers from both strong and frequent events. The tectonic regime of this rhombic-shaped area is affected by the eastern extrusion of the Tibetan highland due to the collision of Eurasian Plate against the Indian lithospheric block along the Himalayan convergent zone. This movement is accommodated on major strike-slip intraplate fault zones that strike in an E-W direction. The gradual 90° clockwise rotation of the faults in the study area contributes to the complexity of the stress field. The seismic hazard assessment in this region is attempted by calculating the change of the Coulomb Failure Function (ΔCFF) arising from both the coseismic slip of strong events (MS≥6.5) and the stress built-up by continuous tectonic loading on major regional faults. At every step of the stress evolutionary model an examination of possible triggering of each next strong event is made and the model finally puts in evidence the fault segments that apt to fail in an impending strong event, thus providing future seismic hazard evaluation.

References

  • Allen C, Gillespie A, Han Y, Sieh K, Zhang B, Zhu C. 1984. Red River and associated faults, Yunnan Province, China: Quaternary geology, slip rates, and seismic hazard [J]. Geol Soc Am Bull, 95: 686–700.

    Article  Google Scholar 

  • Allen C, Luo Z, Qian H, et al. 1991. Field study of a highly active fault zone: The Xianshuihe fault of Southwestern China [J]. Geol Soc Am Bull, 103: 1 178–1 199.

    Article  Google Scholar 

  • Armijo R, Tapponnier P, Mercier J L, et al. 1986. Quaternary extension in southern Tibet: Field observations and tectonic implications [J]. J Geophys Res, 91: 13 803–13 872.

    Article  Google Scholar 

  • Chen Y T and Wu F T. 1989. Langcang-Gengma earthquake: A preliminary report on the November 6, 1988 event and its aftershocks [J]. Eos Trans Amer Geophys Union, 12: 1 527–1 540.

    Article  Google Scholar 

  • Chen Z, Burchfiel C, Liu Y, et al. 2000. Global positioning system measurements from eastern Tibet and their implications for India/Eurasia intercontinental deformation [J]. J Geophys Res, 105: 16 215–16 227.

    Article  Google Scholar 

  • Deng J and Sykes L. 1997. Evolution of the stress field in southern California and triggering of moderate-size earthquakes: A 200-year perspective [J]. J Geophys Res, 102: 9 859–9 886.

    Article  Google Scholar 

  • Engdahl E R, Van Der Hilst R D, Buland R P. 1998. Global teleseismic earthquake relocation with improved travel times and procedures for depth determination [J]. Bull Seism Soc Amer, 88: 722–743.

    Google Scholar 

  • Erikson L. 1986. User’s manual for DIS3D: A three-dimensional dislocation program with applications to faulting in the Earth. Masters Thesis, Stanford Univ., Stanford, Calif, 167.

    Google Scholar 

  • Gao Y, Wu Z, Liu Z, et al. 2000. Seismic source characteristics of nine strong earthquakes from 1988 to 1990 and earthquake activity since 1970 in the Sichuan-Qinghai-Xizang (Tibet) Zone in China [J]. Pure Appl Geophys, 157: 1 423–1 443.

    Article  Google Scholar 

  • HAN Wei-bin and JIANG Guo-fang. 2004. Study on distribution characteristics of strong earthquakes in Sichuan-Yunnan area and their geological tectonic background [J]. Acta Seismologica Sinica, 17(2): 230–243.

    Article  Google Scholar 

  • Harris R and Simpson R. 1993. In the shadow of 1857: An evaluation of the static stress changes generated by the M8 Ft. Tejon, California, earthquake [J]. Eos, Trans Amer Geophys Union, 74(43): 427.

    Google Scholar 

  • Harris R and Simpson R. 1996. In the shadow of 1857: The effect of the great Ft Tejon earthquake on subsequent earthquakes in Southern California [J]. Geophys Res Lett, 23: 229–232.

    Article  Google Scholar 

  • Holt W, Chamot-Rooke N, Le Pichon X, et al. 2000. Velocity field in Asia inferred from Quaternary fault slip rates and Global Positioning System [J]. J Geophys Res, 105: 19 185–19 209.

    Article  Google Scholar 

  • Holt W, Ni J, Wallace T, et al. 1991. The active tectonics of the Eastern Himalayan Syntaxis and surrounding regions [J]. J Geophys Res, 96: 14 595–14 632.

    Article  Google Scholar 

  • Jaumé S C. 1994. Earthquakes in an evolving stress/strain field [D][PhD Dissertation]. New York: Columbia University: 261.

    Google Scholar 

  • Jiang K. 1993. The 1988 Lancang-Gengma Earthquakes (M=7.6, 7.2) in Yunnan, China [M]. Kunming: Yunnan University Press, 387 (in Chinese).

    Google Scholar 

  • Jones L, Han W, Hauksson E, et al. 1984. Focal mechanisms and aftershock locations of the Songpan earthquakes of August 1976 in Sichuan, China [J]. J Geophys Res, 89: 7 697–7 707.

    Article  Google Scholar 

  • King G, Stein R, Lin J. 1994. Static stress changes and the triggering of earthquakes [J]. Bull Seism Soc Amer, 84: 935–953.

    Google Scholar 

  • Kirby E, Whipple K, Burchfiel BC, et al. 2000. Neotectonics of the Min Shan, China: Implications for mechanisms driving Quaternary deformation along the eastern margin of the Tibetan Plateau [J]. Geol Soc Am Bull, 112: 375–393.

    Article  Google Scholar 

  • Leloup P, Lacassin R, Tapponier P, et al. 1995. The Ailao Shan-Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina [J]. Tectonophysics, 251: 3–84.

    Article  Google Scholar 

  • Molnar P and Deng, Q. 1984. Faulting associated with large earthquakes and the average rate of deformation in central and eastern Asia [J]. J Geophys Res, 89: 6 203–6 227.

    Article  Google Scholar 

  • Molnar P and Tapponnier P. 1977. Relation of the tectonics of eastern China to the India-Eurasia collision: Application of slip-line field theory to large scale continental tectonics [J]. Geology, 5: 212–216.

    Article  Google Scholar 

  • Mozaffari P, Wu Z L, Chen Y T. 1998. Rupture process of November 6, 1988, Lancang-Gengma, Yunnan, China, earthquake of MS=7.6 using empirical Green’s function deconvolution method [J]. Acta Seismologica. Sinica, 11: 1–12.

    Article  Google Scholar 

  • Nalbant S, McCloskey J, Steacy S, et al. 2002. Stress accumulation and increased seismic risk in eastern Turkey [J]. Earth Planet Sci Lett, 195: 291–298.

    Article  Google Scholar 

  • Nur A and Mavko G. 1974. Postseismic viscoelastic rebound [J]. Science, 183: 204–206.

    Article  Google Scholar 

  • Okada Y. 1992. Internal deformation due to shear and tensile faults in a half space [J]. Bull Seism Soc Amer, 82: 1 018–1 040.

    Google Scholar 

  • Papadimitriou E, Wen X, Karakostas V, et al. 2004. Earthquake triggering along the Xianshuihe fault zone of western Sichuan, China [J]. Pure Appl Geophys, 161: 1 683–1 707.

    Article  Google Scholar 

  • Papazachos B, Scordilis E, Panagiotopoulos D, et al. 2004. Global relations between seismic fault parameters and moment magnitude of earthquakes [J]. Bull Geol Soc Greece, 36: 1 482–1 489.

    Google Scholar 

  • Parsons T, Roberts S, Yuji Y, et al. 2006. Static stress change from the 8 October, 2005 M=Kashmir earthquake [J]. Geophys Res Lett, 33: L06304, doi:10.1029/2005GL025429.

    Google Scholar 

  • Parsons T, Stein R, Reasenberg A. 1999. Stress sensitivity of fault seismicity: A comparison between limited-offset oblique and major strike-slip faults [J]. J Geophys Res, 104: 20 183–20 202.

    Article  Google Scholar 

  • Peltzer G and Saucier F. 1996. Present-day kinematics of Asia derived from geologic fault rates [J]. J Geophys Res, 101: 27 943–27 956.

    Article  Google Scholar 

  • Qin C, Papazachos C, Papadimitriou E. 2002. Velocity field for crustal deformation in China derived from seismic moment tensor summation of earthquakes [J]. Tectonophysics, 359: 29–46.

    Article  Google Scholar 

  • Reasenberg A and Simpson R. 1992. Response of regional seismicity to the static stress change produced by the Loma Prieta earthquake [J]. Science, 255: 1 687–1 690.

    Article  Google Scholar 

  • Replumaz A, Lacassin R, Tapponier P, et al. 2001. Large River offsets and Plio-Quaternary dextral slip rate on the Red River Fault (Yunnan, China) [J]. J Geophys Res, 106: 819–836.

    Article  Google Scholar 

  • Royden L, Burchfiel C, King R, et al. 1997. Surface deformation and lower crustal flow in eastern Tibet [J]. Science, 276: 788–790.

    Article  Google Scholar 

  • Scholz C. 2002. The mechanics of earthquakes and faulting [J]. Cambridge: Cambridge University Press: 439.

    Book  Google Scholar 

  • Socquet A and Pubbelier M. 2005. Cenozoic deformation in western Yunnan (China-Myanmar border) [J]. J Asian Earth Sci, 24: 495–515.

    Article  Google Scholar 

  • Stein R. 1999. The role of stress transfer in earthquake occurrence [J]. Nature, 402: 605–609.

    Article  Google Scholar 

  • Steketee J. 1958. On Voltera’s dislocations in a semi-infinite elastic medium [J]. Can J Phys, 36: 192–205.

    Article  Google Scholar 

  • Tang R, Huang Z, Qian H, et al. 1984. On the recent tectonic activity and earthquake of Xianshuihe fault zone [C]//A Collection of Papers of International Symposium of on Continental Seismicity and Earthquake Prediction. Beijing: Seismological Press: 347–363.

    Google Scholar 

  • Toda S, Stein R, Reasenberg A, et al. 1998. Stress transferred by the 1995 MW=6.9 Kobe, Japan, shock: Effect on aftershocks and future earthquake probabilities [J]. J Geophys Res, 103: 24 543–24 565.

    Article  Google Scholar 

  • WAN Yong-ge, SHEN Zheng-kang, ZENG Yue-hua, et al. 2007. Evolution of cumulative Coulomb failure stress in northeastern Qinghai-Xizang (Tibetan) Plateau and its effect on large earthquake occurrence [J]. Acta Seismologica Sinica, 20(2): 117–132.

    Article  Google Scholar 

  • Wang E and Burchfiel C. 2000. Late Cenozoic to Holocene deformation in southwestern Sichuan and adjacent Yunnan, China and its role in formation of the southeastern part of the Tibetan Plateau [J]. J Geophys Res, 112: 413–423.

    Google Scholar 

  • Wang Y. 1996. Principal features of the active tectonics in Qinghai-Xizard plateau [J]. J Earth Pred Res, 5: 348–362.

    Google Scholar 

  • WEN X, Yi G, ZHANG P, et al. 2002. A preliminary evaluation of time-dependent seismic hazard for the eastern-boundary fault zone of Sichuan-Yunnan Block, China [C]//Teruyuki K and Zheng S ed. Proceedings of the First China-Japan Workshop on Earthquake Disaster Mitigation. Japan: Earthquake Research Institute: 141–154.

    Google Scholar 

  • Wen X. 2000. Character of rupture segmentation of the Xianshuihe-Anninghe-Zemuhe fault-zone, western Sichuan [J]. Seismology and Geology, 22: 239–249 (in Chinese).

    Google Scholar 

  • Wessel P and Smith W H F. 1998. New, improved version of the Generic Mapping Tools Released, EOS Trans. AGU 79, 579. (net being cited)

  • Xu X, Wen X, Zheng R, et al. 2003. Pattern of latest tectonic motion and its dynamics for active blocks in Sichuan-Yunnan region, China [J]. Science in China (Series D), 33(Suppl.): 151–162.

    Google Scholar 

  • Yang Z, Waldhauser F, Chen Y, et al. 2005. Double difference relocation of earthquakes in central-western China [J]. J Seismology, 9: 241–264.

    Article  Google Scholar 

  • YI Gui-xi and WEN Xue-ze. 2000. Earthquake recurrence on whole active fault zones and its relation to that on individual fault segments [J]. Acta Seismologica Sinica, 13: 563–574.

    Article  Google Scholar 

  • YI Gui-xi, WEN Xue-ze, FAN Jun, et al. 2004. Assessing current faulting behaviors and seismic risk of the Anninghe-Zemuhe fault zone from seismicity parameters [J]. Acta Seismologica Sinica, 17(3): 322–333.

    Article  Google Scholar 

  • Zhao S, Dingbo C, Xian L, et al. 1999. The ML=7.0 Lijiang earthquake, Yunnan, China: An anticipated event [J]. J Geodynamics, 16: 529–546.

    Article  Google Scholar 

  • Zhou H, Allen C, Kanamori H. 1983a. Rupture complexity of the 1970 Tonghai and 1973 Luhuo earthquakes, China, from P wave inversion, and relationship to surface faulting [J]. Bull Seism Soc Amer, 73: 1 585–1 597.

    Google Scholar 

  • Zhou H, Liu H, Kanamori H. 1983b. Source processes of large earthquakes along the Xianshuihe fault in southwestern China [J]. Bull Seism Soc Amer, 73: 537–551.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ch Gkarlaouni.

Additional information

Foundation item: The project of bilateral cooperation between Greece and China funded by the General Secretariat of Research & Technology of Greece (EPAN-M.4.3.6.1/13520) and the Scientific and Technical support project of China (2006BAC13B01).

Contribution No. 699, Department of Geophysics, Aristotle University of Thessaloniki, Greece.

About this article

Cite this article

Gkarlaouni, C., Papadimitriou, E.E., Karakostas, V.G. et al. Implication of fault interaction to seismic hazard assessment in Sichuan-Yunnan provinces of southeastern China. Earthq Sci 21, 181–201 (2008). https://doi.org/10.1007/s11589-008-0009-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11589-008-0009-7

Key words

  • strong earthquakes
  • fault segmentation
  • Coulomb stress changes
  • seismic hazard assessment

CLC number

  • P315.2