Acta Seismologica Sinica

, Volume 21, Issue 2, pp 118–126 | Cite as

Region-related features of crustal and upper-mantle velocity structure of the Chinese mainland detected by surface waveform modeling

  • Mei Feng (冯梅)Email author
  • Mei-jian An (安美建)
  • Suzan van der Lee


Surface waveform modeling has played an important role on many continental-scale studies of upper mantle velocity structure, but it was seldom applied to the Chinese mainland study. The present study firstly analyzed surface waveform fittings for eight wave paths crossing through four different regions of the Chinese mainland (eastern, central, northern and western China), and then inverted for 1D path-averaged S-velocities for these paths. The inverted crustal and upper-mantle S-velocities showed obvious region-related features, which are well consistent with known geotectonic units and previous research results. These results indicate that surface waveform modeling is a reliable method to get crustal and upper-mantle velocity structure. Furthermore, this method has a prominent advantage in detecting upper-mantle structure compared with fundamental-mode surface-wave dispersion method.

Key words

surface waveform modeling region-related feature crustal and upper-mantle S-velocity Chinese mainland 

CLC number



  1. CAO Xiao-lin, ZHU Jie-shou, ZHAO Lian-feng, CAO Jia-min, HONG Xue-hai. 2001. Three dimensional shear wave velocity structure of crust and upper mantle in South China Sea and its adjacent regions by surface waveform inversion [J]. Acta Seismologica Sinica, 14(2): 117–128.CrossRefGoogle Scholar
  2. Dziewonski A M, Friedman A, Giardini D, Woodhouse J H. 1983. Global seismicity of 1982: Centroid-moment tensor solutions for 308 earthquakes [J]. Phys Earth Planet Interi, 33: 76–90.CrossRefGoogle Scholar
  3. Engdahl E R, van der Hilst R D, Buland R. 1998. Global teleseismic earthquake relocation with improved travel times and procedures for depth determination [J]. Bull Seism Soc Amer, 88: 722–743.Google Scholar
  4. FENG Mei and AN Mei-jian. 2007. Middle and upper crust shear-wave velocity structure of the Chinese mainland [J]. Acta Seismologica Sinica, 20(4): 359–369, doi:10.1029/2006JB004449.CrossRefGoogle Scholar
  5. Feng M, van der Lee S, Assumpcão M. 2007. Upper mantle structure of South America from joint inversion of waveforms and fundamental-mode group velocities of Rayleigh waves [J]. J Geophys Res, 112: B04312, doi:10.1029/2006JB004449.Google Scholar
  6. FENG Rui, ZHU Jie-shou, DING Yun-yu, CHEN Guo-ying, HE Zheng-qin, YANG Shu-bin, ZHOU Hai-nan, SUN Ke-zhong. 1981. Crustal structure in China from surface waves [J]. Acta Seismologica Sinica, 3(4): 336–350 (in Chinese).Google Scholar
  7. Gee L S, Jordan T H. 1992. Generalized seismological data functionals [J]. Geophys J Int, 111(2): 363–390.CrossRefGoogle Scholar
  8. HE Zheng-qin, DING Zhi-feng, YE Tai-lan, SUN Wei-guo, ZHANG Nai-ling. 2002. Group velocity distribution of Rayleigh waves and crustal and upper mantle velocity structure of the Chinese mainland and its vicinity [J]. Acta Seismologica Sinica, 15(3): 269–275.CrossRefGoogle Scholar
  9. Huang Z, Su W, Peng Y, Zheng Y, Li H. 2003. Rayleigh wave tomography of China and adjacent regions [J]. J Geophys Res, 108(B2): 2 073, doi:10.1029/2001JB001696.CrossRefGoogle Scholar
  10. Kennett B L N, Engdahl E R. 1991. Traveltimes for global earthquake location and phase identification [J]. Geophys J Int, 105: 429–465.CrossRefGoogle Scholar
  11. Lebedev S, Nolet G. 1997. The upper mantle beneath the Philippine Sea region from waveform inversions [J]. Geophys Res Lett, 24(15): 1 051–1 854.CrossRefGoogle Scholar
  12. Lebedev S, Nolet G. 2003. Upper mantle beneath Southeast Asia from S velocity tomography [J]. J Geophys Res, 108(B1): 2 048.CrossRefGoogle Scholar
  13. Li S L, Mooney W D, Fan J C. 2006. Crustal structure of mainland China from deep seismic sounding data [J]. Tectonophysics, 420: 239–252.CrossRefGoogle Scholar
  14. Marone F, van der Meijde M, van der Lee S, Giardini D. 2004. Three-dimensional upper-mantle S-velocity model for the Eurasia-Africa plate boundary region [J]. Geophys J Int, 158: 109–130.CrossRefGoogle Scholar
  15. Nolet G. 1990. Partitioned waveform inversion and two-dimensional structure under the Network of Autonomous Recording Seismographs [J]. J Geophys Res, 95: 8 499–8 512.CrossRefGoogle Scholar
  16. Ritzwoller M H, Levshin A L. 1998. Eurasian surface wave tomography: Group velocities [J]. J Geophys Res, 103(B3): 4 839–4 878.CrossRefGoogle Scholar
  17. van der Lee S, Nolet G. 1997. Upper-mantle S velocity structure of North America [J]. J Geophys Res, 102: 22 815–22 838.CrossRefGoogle Scholar
  18. Villaseñor A, Ritzwoller M H, Levshin A L, Barmin M P, Engdahl E R, Spakman W, Trampert J. 2001. Shear velocity structure of central Eurasia from inversion of surface wave velocities [J]. Phys Earth Planet Ints, 123: 169–184.CrossRefGoogle Scholar
  19. XU Guo-ming, LI Guang-pin, WANG Shan-en, CHEN Hong, ZHOU Hu-shun. 2000. The 3-D structure of shear waves in the crust and mantle of east continental China inverted by Rayleigh wave data [J]. Chinese J Geophys, 43(3): 366–376 (in Chinese).Google Scholar
  20. ZHU Jie-shou, CAO Jia-min, CAI Xue-lin, YAN Zhong-qiong, CAO Xiao-lin. 2002. High resolution surface wave tomography in East Asia and West Pacific marginal seas [J]. Chinese J Geophys, 45(5): 679–698.CrossRefGoogle Scholar

Copyright information

© Seismological Society of China and Springer-Verlag GmbH 2008

Authors and Affiliations

  • Mei Feng (冯梅)
    • 1
    Email author
  • Mei-jian An (安美建)
    • 1
  • Suzan van der Lee
    • 2
  1. 1.Institute of GeomechanicsChinese Academy of Geological SciencesBeijingChina
  2. 2.Department of Earth and Planetary SciencesNorthwestern UniversityEvanstonUSA

Personalised recommendations