Advertisement

Acta Seismologica Sinica

, Volume 21, Issue 2, pp 109–117 | Cite as

Exact solution of earth-flattening transformation for P-SV waves: Taking surface wave as an example

  • Hui Huang (黄慧)
  • Xiao-fei Chen (陈晓非)Email author
Article
  • 103 Downloads

Abstract

Taking surface wave as an example this paper proposes an exact solution of earth-flattening transformation for P-SV waves and discusses the applicability of the approximate methods. The results show that the transform parameter m has little influence on the final results, and on the condition of short wave approximation, approximate earth-flattening transformation is suitable. Moreover, the efficiency of approximate transformation is twice of that of exact transformation. For low frequency problems exact earth-flattening transformation should be used.

Key words

earth-flattening transformation generalized reflection-transmission coefficients method eigen-displacement and traction phase velocity surface wave 

CLC number

P315.3+

References

  1. Aki K, Richards P G. 1980. Quantitative Seismology: Theory and Methods [M]. San Francisco: W H Freeman: 267–286.Google Scholar
  2. Bhattacharya S N. 1996. Short notes: Earth-flattening transformation for P-SV waves [J]. Bull Seism Soc Amer, 86: 1 979–1 982.Google Scholar
  3. Bhattacharya S N. 2005. Synthetic seismograms in a spherical Earth using exact flattening transformation [J]. Geophys Res Lett, 32(21): L21303.CrossRefGoogle Scholar
  4. Bhattacharya S N and Arora S. 1997. A flattening transformation for P-SV waves in a transversely isotropic earth [J]. Bull Seism Soc Amer, 87: 1 297–1 304.Google Scholar
  5. Biswas N. 1972. Earth-flattening procedure for the propagation of Rayleigh wave [J]. Pure Appl Geophys, 96: 61–74.CrossRefGoogle Scholar
  6. Biswas N and Knopoff L. 1970. Exact-earth-flattening calculation for Love waves [J]. Bull Seism Soc Amer, 60: 1 123–1 137.Google Scholar
  7. Chen X F. 1993. A systematic and efficient method of computing normal modes for multi-layered half space [J]. Geophys J Int, 115: 391–409.CrossRefGoogle Scholar
  8. Chen X F. 1999. Seismograms synthesis in multi-layered half-space (I): Theoretical formulation [J]. Earthquake Research in China, 13(2): 149–174.Google Scholar
  9. Dahlen F A, Tromp J. 1998. Theoretical Global Seismology [M]. Princeton: Princeton University Press: 268–272.Google Scholar
  10. HE Yao-feng, CHEN Wei-tian, CHEN Xiao-fei. 2006. Normal mode computation by the generalized reflection-transmission coefficient method in planar layered half space [J]. Chinese J Geophys, 49(4): 1 074–1 081 (in Chinese).CrossRefGoogle Scholar
  11. Kennett B L N. 1983. Seismic Wave Propagation in Stratified Media [M]. New York: Cambridge University Press: 25–44.Google Scholar
  12. YE Qi-xiao and SHEN Yong-huan. 2006. Mathematical Handbook [M]. Beijing: Science Press: 16–18 (in Chinese).Google Scholar

Copyright information

© Seismological Society of China and Springer-Verlag GmbH 2008

Authors and Affiliations

  1. 1.Computational Geodynamics Laboratory School of Earth and Space SciencesPeking UniversityBeijingChina

Personalised recommendations