Skip to main content
Log in

On recognition of the direct squares of the simple groups with abelian Sylow 2-subgroups

Ricerche di Matematica Aims and scope Submit manuscript

Abstract

The spectrum of a group is the set of orders of its elements. Finite groups with the same spectra as the direct squares of the finite simple groups with abelian Sylow 2-subgroups are considered. It is proved that the direct square \(J_1\times J_1\) of the sporadic Janko group \(J_1\) and the direct squares \({^2}G_2(q)\times {^2}G_2(q)\) of the simple small Ree groups \({^2}G_2(q)\) are uniquely characterized by their spectra in the class of finite groups, while for the direct square \(PSL_2(q)\times PSL_2(q)\) of a 2-dimensional simple linear group \(PSL_2(q)\), there are always infinitely many groups (even solvable groups) with the same spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Alperin, J.L., Gorenstein, D.: The multiplicators of certain simple groups. Proc. Am. Math. Soc. 17, 515–519 (1966)

    Article  MathSciNet  Google Scholar 

  2. Bang, A.S.: Talteoretiske Undersøgelser. Tidsskrift Mat. 4(5) 70–80, 130–137 (1886)

  3. Brachter, J., Schweitzer, P.: A systematic study of isomorphism invariants of finite groups via the Weisfeiler-Leman dimension. In: 30th Annual European Symposium on Algorithms. Art. No. 27, 14 pp., LIPIcs. Leibniz Int. Proc. Inform., 244, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern (2022)

  4. Brandl, R., Shi, W.J.: A characterization of finite simple groups with abelian Sylow \(2\)-subgroups. Ricerche Mat. 42(1), 193–198 (1993)

    MathSciNet  Google Scholar 

  5. Bray, J.N., Holt, D.F., Roney-Dougal, C.M.: The Maximal Subgroups of the Low-Dimensional Finite Classical Groups. With a foreword by Martin Liebeck. London Mathematical Society Lecture Note Series, 407. Cambridge University Press, Cambridge (2013)

  6. Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A.: Atlas of Finite Groups. Maximal Subgroups and Ordinary Characters for Simple Groups. With Computational Assistance from J. G. Thackray. Oxford University Press, Eynsham (1985)

  7. Martino, LDi., Zalesskii, A.E.: Eigenvalues of unipotent elements in cross-characteristic representations of finite classical groups. J. Algebra 319(7), 2668–2722 (2008)

    Article  MathSciNet  Google Scholar 

  8. Gorenstein, D.: Finite Groups. Harper and Row Publishers, New York, London (1968)

    Google Scholar 

  9. Gorshkov, I.B., Maslova, N.V.: The group \(J_4\times J_4\) is recognizable by spectrum. J. Algebra Appl. 20(4), 2150061 (2021)

    Article  Google Scholar 

  10. Grechkoseeva, M.A.: On primitive prime divisors of the orders of Suzuki and Ree groups, Algebra Logic. 62(1), 41–49 (2023)

  11. Grechkoseeva, M.A., Mazurov, V.D., Shi, W., Vasil’ev, A.V., Yang, N.: Finite groups isospectral to simple groups. Commun. Math. Stat. 11(2), 169–194 (2023)

    Article  MathSciNet  Google Scholar 

  12. Grochow, J.A., Levet, M.: On the parallel complexity of group isomorphism via Weisfeiler-Leman, arXiv:2112.11487 [cs.DS]

  13. Guralnick, R.M., Tiep, P.H.: Finite simple unisingular groups of Lie type. J. Group Theory. 6(3), 271–310 (2003)

    Article  MathSciNet  Google Scholar 

  14. Hall, P.: Theorems like Sylow’s. Proc. Lond. Math. Soc. 6(3), 286–304 (1956)

    Article  MathSciNet  Google Scholar 

  15. Hall, P., Higman, G.: On the \(p\)-length of \(p\)-soluble groups and reduction theorem for Burnside’s problem. Proc. Lond. Math. Soc. 6(3), 1–42 (1956)

    Article  MathSciNet  Google Scholar 

  16. Higman, G.: Finite groups in which every element has prime power order. J. Lond. Math. Soc. 32, 335–342 (1957)

    Article  MathSciNet  Google Scholar 

  17. Jansen, C., Lux, K., Parker, R., Wilson, R.: An Atlas of Brauer Characters. The Clarendon Pres, New York (1995)

    Google Scholar 

  18. Kimmerle, W., Luca, F., Raggi-Cárdenas, A.G.: Irreducible components and isomorphisms of the Burnside ring. J. Group Theory. 11(6), 831–844 (2008)

    Article  MathSciNet  Google Scholar 

  19. Mazurov, V.D.: On the set of orders of elements of a finite group. Algebra Logic. 33(1), 49–55 (1994)

    Article  MathSciNet  Google Scholar 

  20. Mazurov, V.D.: Recognition of finite nonsimple groups by the set of orders of their elements. Algebra Logic. 36(3), 182–192 (1997)

    Article  MathSciNet  Google Scholar 

  21. Mazurov, V.D., Shi, W.J.: A criterion of unrecognizability by spectrum for finite groups. Algebra Logic. 51(2), 160–162 (2012)

    Article  MathSciNet  Google Scholar 

  22. Ree, R.: A family of simple groups associated with the simple Lie algebra of type \((G_{2})\). Am. J. Math. 83, 432–462 (1961)

    Article  MathSciNet  Google Scholar 

  23. Tiep, P.H., Zalesski, A.E.: Hall-Higman type theorems for exceptional groups of Lie type, I. J. Algebra 607(part A), 755–794 (2022)

    Article  MathSciNet  Google Scholar 

  24. Vasil’ev, A.V.: On finite groups isospectral to simple classical groups. J. Algebra 423, 318–374 (2015)

    Article  MathSciNet  Google Scholar 

  25. Vasil’ev, A.V., Grechkoseeva, M.A., Mazurov, V.D.: Characterization of the finite simple groups by spectrum and order. Algebra Logic 48(6), 385–409 (2009)

    Article  MathSciNet  Google Scholar 

  26. Vasil’ev, A.V., Vdovin, E.P.: An adjacency criterion for the prime graph of a finite simple group. Algebra Logic. 44(6), 381–406 (2005)

    Article  MathSciNet  Google Scholar 

  27. Vasil’ev, A.V., Vdovin, E.P.: Cocliques of maximal size in the prime graph of a finite simple group. Algebra Logic. 50(4), 291–322 (2011)

    Article  MathSciNet  Google Scholar 

  28. Vdovin, E.P., Revin, D.O.: Theorems of Sylow type. Russ. Math. Surv. 66(5), 829–870 (2011)

    Article  Google Scholar 

  29. Walter, J.H.: The characterization of finite groups with abelian Sylow \(2\)-subgroups. Ann. Math. 2(89), 405–514 (1969)

    Article  MathSciNet  Google Scholar 

  30. Wang, Zh., Vasil’ev, A.V., Grechkoseeva, M.A., Zhurtov, AKh.: A criterion for nonsolvability of a finite group and recognition of direct squares of simple groups. Algebra Logic. 61(4), 288–300 (2022)

    Article  MathSciNet  Google Scholar 

  31. Zalesskiĭ, A.E.: Minimal polynomials and eigenvalues of \(p\)-elements in representations of quasi-simple groups with a cyclic Sylow \(p\)-subgroup. J. Lond. Math. Soc. (2) 59(3), 845–866 (1999)

    Article  MathSciNet  Google Scholar 

  32. Zsigmondy, K.: Zur Theorie der Potenzreste. (German). Monatsh. Math. Phys. 3(1), 265–284 (1892)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Maria Grechkoseeva for useful comments and fruitful discussions. A. V. Vasil’ev was supported by RAS Fundamental Research Program, project FWNF-2022-0002, and by National Natural Science Foundation of China (No. 12171126).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey V. Vasil’ev.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Dedicated to Professor Shi Wujie on the occasion of his 80th birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Moghaddamfar, A.R., Vasil’ev, A.V. et al. On recognition of the direct squares of the simple groups with abelian Sylow 2-subgroups. Ricerche mat (2024). https://doi.org/10.1007/s11587-024-00847-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11587-024-00847-8

Keywords

Mathematics Subject Classification

Navigation