Skip to main content

Advertisement

Log in

Modelling domain-wall orientation in antiferromagnets driven by magnetoelastic interactions and volume variations

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

In this paper, we build the mathematical framework to describe the physical phenomenon behind the equilibrium configuration joining two orthogonal antiferromagnetic domains that are simultaneously subject to magnetoelastic interactions and volume variations. To achieve this goal, we firstly define the total energy of the system and deduce the governing equations by minimizing it with respect to the field variables. Then, in order to deduce the angular dependence of elastic and magnetoelastic energies, we solve the resulting system of nonlinear PDEs together with proper boundary conditions. Results of our analytical investigations and numerical simulations allow to identify the optimal setup in which the overall energy is minimized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availibility

No data was used for the research described in the article.

References

  1. Weber, N.B., Ohldag, H., Gomonay, H., Hillebrecht, F.U.: Magnetostrictive domain walls in antiferromagnetic NiO. Phys. Rev. Lett. 91, 237205 (2003). https://doi.org/10.1103/PhysRevLett.91.237205

    Article  Google Scholar 

  2. Bossini, D., Pancaldi, M., Soumah, L., Basini, M., Mertens, F., Cinchetti, M., Satoh, T., Gomonay, O., Bonetti, S.: Ultrafast amplification and nonlinear magnetoelastic coupling of coherent magnon modes in an antiferromagnet. Phys. Rev. Lett. 127, 077202 (2021). https://doi.org/10.1103/PhysRevLett.127.077202

    Article  Google Scholar 

  3. Gomonay, O., Bossini, D.: Linear and nonlinear spin dynamics in multi-domain magnetoelastic antiferromagnets. J. Phys. D Appl. Phys. 54, 374004 (2021). https://doi.org/10.1088/1361-6463/ac055c.10

    Article  Google Scholar 

  4. Sato, T., Yu, W., Streib, S., Bauer, G.E.W.: Dynamic magnetoelastic boundary conditions and the pumping of phonons. Phys. Rev. B 104, 014403 (2021). https://doi.org/10.1103/PhysRevB.104.014403

    Article  Google Scholar 

  5. Meer, H., Gomonay, O., Schmitt, C., Ramos, R., Schnitzspan, L., Kronast, F., Mawass, M.A., Valencia, S., Saitoh, E., Sinova, J., Baldrati, L., Klaui, M.: Strain-induced shape anisotropy in antiferromagnetic structures. Phys. Rev. B 106, 094430 (2022). https://doi.org/10.1103/PhysRevB.106.094430

    Article  Google Scholar 

  6. Folven, E., Tybell, T., Scholl, A., Young, A., Retterer, S.T., Takamura, Y., Grepstad, J.K.: Antiferromagnetic domain reconfiguration in embedded LaFeO3 thin film nanostructures. Nano Lett. 10, 4578–4583 (2010). https://doi.org/10.1021/nl1025908

    Article  Google Scholar 

  7. Folven, E., Scholl, A., Young, A., Retterer, S.T., Boschker, J.E., Tybell, T., Takamura, Y., Grepstad, J.K.: Crossover from spin-flop coupling to collinear spin alignment in antiferromagnetic/ferromagnetic nanostructures. Nano Lett. 12, 2386–2390 (2012). https://doi.org/10.1021/nl300361e

    Article  Google Scholar 

  8. Bang, A.D., Hallsteinsen, I., Chopdekar, R.V., Olsen, F.K., Sloetjes, S.D., Kjærnes, K., Arenholz, E., Folven, E., Grepstad, J.K.: Shape-imposed anisotropy in antiferromagnetic complex oxide nanostructures. Appl. Phys. Lett. 115, 112403 (2019). https://doi.org/10.1063/1.5116806

    Article  Google Scholar 

  9. Gomonay, H., Loktev, V.M.: Magnetostriction and magnetoelastic domains in antiferromagnets. J. Phys. Condens. Matter 14, 3959–3971 (2002). https://doi.org/10.1088/0953-8984/14/15/310

    Article  Google Scholar 

  10. Reimers, S., Kriegner, D., Gomonay, O., Carbone, D., Krizek, F., Novák, V., Campion, R.P., Maccherozzi, F., Bjorling, A., Amin, O.J., Barton, L.X., Poole, S.F., Omari, K.A., Michalicka, J., Man, O., Sinova, J., Jungwirth, T., Wadley, P., Dhesi, S.S., Edmonds, K.W.: Defect-driven antiferromagnetic domain walls in CuMnAs films. Nat. Commun. 13, 724 (2022). https://doi.org/10.1038/s41467-022-28311-x

    Article  Google Scholar 

  11. Consolo, G., et al.: Theory of the electric field controlled antiferromagnetic spin Hall oscillator and detector. Phys. Rev. B 103, 134431 (2021). https://doi.org/10.1103/PhysRevB.103.134431

    Article  Google Scholar 

  12. Wittmann, A., Gomonay, O., Litzius, K., Kaczmarek, A., Kossak, A.E., Wolf, D., Lubk, A., Johnson, T.N., Tremsina, E.A., Churikova, A., Buttner, F., Wintz, S., Mawass, M.A., Weigand, M., Kronast, F., Scipioni, L., Shepard, A., Newhouse-Illige, T., Greer, J.A., Schutz, G., Birge, N.O., Beach, G.S.D.: Role of substrate clamping on anisotropy and domain structure in the canted antiferromagnet \(\alpha -Fe_2O_3\). Phys. Rev. B 106, 224419 (2022). https://doi.org/10.1103/PhysRevB.106.224419

    Article  Google Scholar 

  13. Kléman, M., Schlenker, M.: The use of dislocation theory in magnetoelasticity. J. Appl. Phys. 43, 3184–3190 (1972). https://doi.org/10.1063/1.1661683

    Article  Google Scholar 

  14. Kléman, M.: Internal stresses due to magnetic wall junctions in a perfect ferromagnet. J. Appl. Phys. 45, 1377–1381 (1974). https://doi.org/10.1063/1.1663415

    Article  Google Scholar 

  15. Kléman, M., Labrune, M., Miltat, J., Nourtier, C., Taupin, D.: Magnetostriction and magnetostrictivite effects in magnetic materials. J. Appl. Phys. 49, 1989–1991 (1978). https://doi.org/10.1063/1.324773

    Article  Google Scholar 

  16. Sapriel, J.: Domain-wall orientations in ferroelastics. Phys. Rev. B 12, 5128–5140 (1975). https://doi.org/10.1103/PhysRevB.12.5128

    Article  Google Scholar 

  17. Bishop, A.R., Lookman, T., Saxena, A., Rasmussen, K., Shenoy, S.R.: Ferroelastic dynamics and strain compatibility. Phys. Rev. B 67, 1–27 (2003). https://doi.org/10.1103/PhysRevB.67.024114

    Article  Google Scholar 

  18. Zhang, J.X., Chen, L.Q.: Phase-field microelasticity theory and micromagnetic simulations of domain structures in giant magnetostrictive materials. Acta Mater. 53, 2845–2855 (2005). https://doi.org/10.1016/j.actamat.2005.03.002

    Article  Google Scholar 

  19. Consolo, G., Federico, S., Valenti, G.: Strain-mediated propagation of magnetic domain-walls in cubic magnetostrictive materials. Ric. Mat. 70, 81–97 (2021). https://doi.org/10.1007/s11587-020-00484-x

    Article  MathSciNet  MATH  Google Scholar 

  20. Consolo, G., Federico, S., Valenti, G.: Magnetostriction in transversely isotropic hexagonal crystals. Phys. Rev. B 101, 014405 (2020). https://doi.org/10.1103/PhysRevB.101.014405

    Article  Google Scholar 

  21. Maity, S., Dolui, S., Dwivedi, S., Consolo, G.: Domain wall dynamics in cubic magnetostrictive materials subject to Rashba effect andnonlinear dissipation. Z. Angew. Math. Phys. 74, 23 (2023). https://doi.org/10.1007/s00033-022-01911-9

    Article  MATH  Google Scholar 

  22. Hsiao, G.C., Wendland, W.L.: On a boundary integral method for some exterior problems in elasticity. Proc. Tbilisi Univ. 257, 31–60 (1985)

    MathSciNet  Google Scholar 

  23. Erath, C., Ferraz-Leite, S., Funken, S., Praetorius, D.: Energy norm based a posteriori error estimation for boundary element methods in two dimensions. Appl. Num. Math. 59(11), 2713–2734 (2009). https://doi.org/10.1016/j.apnum.2008.12.024

    Article  MathSciNet  MATH  Google Scholar 

  24. Teodosiu, C.: Elastic Models of Crystal Defects. Springer, Berlin (1982). https://doi.org/10.1007/978-3-662-11634-0

    Book  MATH  Google Scholar 

  25. Duffy, D.G.: Green’s Functions with Applications. CRC Press, Boca Raton (2015). https://doi.org/10.1201/9781315371412

    Book  MATH  Google Scholar 

  26. P. Vergallo, B. Karetta, G. Consolo, O. Gomonay, Domain-wall orientation in antiferromagnets controlled by magnetoelastic effects. arXiv:2301.12539

  27. COMSOL Multiphysics ®v.6.1 COMSOL AB, Stockholm, Sweden

  28. Meer, H., Schreiber, F., Schmitt, C., Ramos, R., Saitoh, E., Gomonay, O., Sinova, J., Baldrati, L., Klaui, M.: Direct imaging of current-induced antiferromagnetic switching revealing a pure thermomagnetoelastic switching mechanism in NiO. Nano Lett. 21, 114–119 (2021). https://doi.org/10.1021/acs.nanolett.0c03367

    Article  Google Scholar 

Download references

Acknowledgements

The results contained in the present paper have been partially presented in WASCOM 2021. The authors acknowledge the financial support from INdAM-GNFM and MUR (Italian Ministry of University and Research) through project PRIN2017 n. 2017YBKNCE entitled “ Multiscale phenomena in Continuum Mechanics: singular limits, off-equilibrium and transitions”. PV also acknowledges the research project “ Mathematical Methods in Non Linear Physics (MMNLP)” by the Commissione Scientifica Nazionale – Gruppo 4 – Fisica Teorica of the Istituto Nazionale di Fisica Nucleare (INFN). OG acknowledges funding from the Deutsche Forschungsgemeinschaft via TRR 288- 422213477 (projects A09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierandrea Vergallo.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Consolo, G., Gomonay, O.V. & Vergallo, P. Modelling domain-wall orientation in antiferromagnets driven by magnetoelastic interactions and volume variations. Ricerche mat (2023). https://doi.org/10.1007/s11587-023-00799-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11587-023-00799-5

Keywords

Mathematics Subject Classification

Navigation