Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)
MathSciNet
Article
Google Scholar
Benct, V., D’Avenia, P., Fortunato, D., Pisani, L.: Solitons in several space dimensions: Derrick’s problem and infinitely many solutions. Arch. Ration. Mech. Anal. 154, 297–324 (2000)
MathSciNet
Article
Google Scholar
Cherfils, L., Il’Yasov, Y.: On the stationary solutions of generalized reaction diffusion equations with \( p\) and \(q\)-Laplacian. Commun. Pure Appl. Anal. 4, 9–22 (2005)
MathSciNet
Article
Google Scholar
Cruz-Uribe, D.V., Fiorenza, A.: Variable Lebesgue Spaces: Foundations and Harmonic Analysis. Bickhäuser, Basel (2013)
Book
Google Scholar
Diening, L., Harjulehto, P., Hästö, P., Ruzicka, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics, vol. 2017. Springer, Heidelberg (2011)
Book
Google Scholar
Fan, X.L.: Global \(C^{1,\alpha }\) regularity for variable exponent elliptic equations in divergence form. J. Differ. Equ. 235, 397–417 (2007)
Article
Google Scholar
Gasiński, L., Papageorgiou, N.S.: Anisotropic nonlinear Neumann problems. Calc. Var. Partial Differ. Equ. 42, 323–354 (2011)
MathSciNet
Article
Google Scholar
Lieberman, G.M.: The natural generalization of the natural conditions of Ladyzhenskaya and Uraltseva for elliptic equations. Commun. Partial Differ. Equ. 16, 311–361 (1991)
MathSciNet
Article
Google Scholar
Papageorgiou, N.S., Qin, D.D., Rǎdulescu, V.D.: Anisotropic double-phase problems with indefinite potential: multiplicity of solutions. Anal. Math. Phys. 10(63), 1–37 (2020)
MathSciNet
MATH
Google Scholar
Papageorgiou, N.S., Rǎdulescu, V.D.: Coercive and noncoercive nonlinear Neumann problems with indefinite potential. Forum Math. 28, 545–571 (2016)
MathSciNet
Article
Google Scholar
Papageorgiou, N.S., Rǎdulescu, V.D., Repovš, D.D.: Positive solutions for perturbations of the Robin eigenvalue problem plus an indefinite potential. Discrete Contin. Dyn. Syst. 37, 2589–2618 (2017)
MathSciNet
Article
Google Scholar
Papageorgiou, N.S., Rǎdulescu, V.D., Repovš, D.D.: Nonlinear Analysis Theory and Methods. Springer, Cham (2019)
Book
Google Scholar
Papageorgiou, N.S., Rǎdulescu, V.D., Repovš, D.D.: Anisotropic equations with indefinite potential and competing nonlinearities. Nonlinear Anal. 201, ID: 111861 (2020)
Papageorgiou, N.S., Vetro, C.: Superlinear \((p(z), q (z))\)-equations. Complex Var. Elliptic Equ. 64, 8–25 (2019)
MathSciNet
Article
Google Scholar
Rǎdulescu, V.D.: Isotropic and anisotropic double-phase problems: old and new. Opuscula Math. 39, 259–280 (2019)
MathSciNet
Article
Google Scholar
Rǎdulescu, V.D., Repovš, D.D.: Partial differential equations with variable exponents: variational methods and qualitative analysis. CRC Press, Taylor Frances Group, Boca Raton (2015)
Book
Google Scholar
Ragusa, M.A., Tachikawa, A.: Regular for minimizer for functions of double phase with variable exponents. Adv. Nonlinear Anal. 9, 710–728 (2020)
MathSciNet
Article
Google Scholar
Ruzicka, M.: Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Mathematics, vol. 1748. Springer, Berlin (2000)
Book
Google Scholar
Takáč, P., Giacomoni, J.: A \(p(x)\)-Laplacian extension of the Díaz–Saa inequality and some applications. Proc. R. Soc. Edinb. A 150, 205–232 (2020)
Article
Google Scholar
Tan, Z., Fang, F.: Orlicz–Sobolev versus Hölder local minimizer and multiplicity results for quasilinear elliptic equations. J. Math. Anal. Appl. 402, 348–370 (2013)
MathSciNet
Article
Google Scholar
Vetro, C.: Weak solutions to Dirichlet boundary value problem driven by \(p(x)\)-Laplacian-like operator. Electr. J. Qual. Theory Differ. Equ. 2017, 1–10 (2017)
Vetro, C., Vetro, F.: On problems driven by the \((p (\cdot ), q (\cdot ))\)-Laplace operator. Medit. J. Math. 17, 1–11 (2020)
MathSciNet
Article
Google Scholar
Zhikov, V.V.: On variational problems and nonlinear elliptic equations with nonstandard growth conditions. J. Math. Sci. 173, 463–570 (2011)
MathSciNet
Article
Google Scholar