Brunner, H.: Collocation Method for Volterra Integral and Related Functional Equations. Cambridge University Press, Cambridge (2004)
Book
Google Scholar
Maleknejad, K., Aghazadeh, N.: Numerical solution of Volterra integral equations of the second kind with convolution kernel by using Taylor-series expansion method. Appl. Math. Comput. 161, 915–922 (2005)
MathSciNet
MATH
Google Scholar
Sezer, M.: Taylor polynomial solution of Volterra integral equations. Internat. J. Math. Ed. Sci. Tech. 25, 625–633 (1994)
MathSciNet
Article
Google Scholar
Maleknejad, K., Kajani, M.T., Mahmoudi, Y.: Numerical solution of Fredholm and Volterra integral equation of the second kind by using Legendre wavelets. Kybernetes 32, 1530–1539 (2003)
Article
Google Scholar
Maleknejad, K., Sohrabi, S., Rostami, Y.: Numerical solution of nonlinear Volterra integral equations of the second kind by using Chebyshev polynomials. Appl. Math. Comput. 188, 123–128 (2007)
MathSciNet
MATH
Google Scholar
Shiralashetti, S.C., Mundewadi, R.A.: Numerical Solution of nonlinear Volterra-Fredholm Integral equations using Haar Wavelet collocation method. Bulletin of Math. Sci. and App. 18, 50–59 (2017)
Google Scholar
Maleknejad, K., Almasieh, H., Roodaki, M.: Triangular functions (TF) method for the solution of nonlinear Volterra-Fredholm integral equations. Commun. Nonlinear Sci. Numer. Simul. 15, 3293–3298 (2010)
MathSciNet
Article
Google Scholar
ImranAziz, Siraj-ul-Islam.: New algorithms for the numerical solution of nonlinear Fredholm and Volterra integral equations using Haar wavelets. J. Comp. App. Math. 239, 333–345 (2013)
MathSciNet
Article
Google Scholar
Amin, R., Nazir, S., García-Magarino, I.: Efficient sustainable algorithm for numerical solution of nonlinear delay Fredholm-Volterra integral equations via Haar wavelet for dense sensor networks in emerging telecommunications. Trans. Emerg. Telecommun. (2020). https://doi.org/10.1002/ett.3877
Amin, R., Kamal, S., Asif, M., Khan, I.: Efficient numerical technique for solution of delay Volterra-Fredholm integral equations using Haar wavelet. Heliyon (2020). https://doi.org/10.1016/j.heliyon.2020.e05108
Amin, R., Kamal, S., Asif, M., Khan, I.: Efficient numerical technique for solution of delay Volterra-Fredholm integral equations using Haar wavelet. Heliyon 6(10), e05108 (2020)
Article
Google Scholar
Babolian, E., Shahsavaran, A.: Numerical solution of nonlinear Fredholm integral equations of the second kind using Haar wavelets. J. Comp. App. Math. 225, 87–95 (2009)
MathSciNet
Article
Google Scholar
Maleknejad, K., Hashemizadeh, E., Ezzati, R.: A new approach to the numerical solution of Volterra integral equations by using Bernstein’s approximation. Comm. Non. Sci. Num. Sim. 16, 647–655 (2011)
MathSciNet
Article
Google Scholar
Alipanah, A., Smaeili, S.: Numerical solution of the two-dimensional Fredholm integral equations using Gaussian radial basis function. J. Comput. Appl. Math. 235, 5342–5347 (2011)
MathSciNet
Article
Google Scholar
Alipanah, A., Ehghan, M.: Numerical solution of the nonlinear Fredholm integral equations by positive definite functions. Appl. Math. Comput. 190, 1754–1761 (2007)
MathSciNet
MATH
Google Scholar
Banas, J., Sadarangani, K.: Monotonicity properties of the superposition operator and their application. J. Math. Anal. Appl. 340, 1385–1394 (2008)
MathSciNet
Article
Google Scholar
Meehan, M., Regan, D.: Multiple nonnegative solutions of nonlinear integral equations on compact and semi-infinite intervals. Appl. Anal. 74, 413–427 (2000)
MathSciNet
Article
Google Scholar
Horvat-Marc, A., Precup, R.: Nonnegative solutions of nonlinear integral equations in ordered Banach spaces. Fixed Point Theory. 5, 65–70 (2004)
MathSciNet
MATH
Google Scholar
Deimling, K.: Nonlinear Functional Analysis. Springer-Verlag, Berlin (1985)
Book
Google Scholar
Khater, A., Temsah, R., Hassan, M.: A Chebyshev spectral collocation method for solving Burger’s-type equations. J. Comp. App. Math. 222, 333–350 (2008)
Olmos, D., Shizgal, B.: A pseudospectral method of solution of Fisher’s equation. J. Comp. App. Math. 193, 219–242 (2006)
Javidi, M.: Spectral collocation method for the solution of the generalized Burger-Fisher equation. App. Math. Compu. 174, 345–352 (2006)
MathSciNet
Article
Google Scholar
Javidi, M.: A numerical solution of the generalized BurgersHuxley equation by spectral collocation method. App. Math. Comp. 178, 338–344 (2006)
Article
Google Scholar
Dehghan, M., Fakhar-Izadi, F.: Pseudospectral methods for Nagumo equation. Int. J. Num. Meth. Bio. Eng. 27, 553–561 (2011)
MathSciNet
Article
Google Scholar
Motsa, S.: New algorithm for solving non-linear BVPs in heat transfer. Int. J. Mod. Sim. Sci. Comp. 2, 355–373 (2011)
Google Scholar
Awad, F., Sibanda, P., Motsa, S., Makinde, O.: Convection from an inverted cone in a porous medium with cross-diffusion effects. Comp. Math. App. 61, 1431–1441 (2011)
MathSciNet
Article
Google Scholar
Makukula, Z., Sibanda, P., Motsa, S.: A novel numerical technique for two-dimensional laminar flow between two moving porous walls. Math. Prob. Eng., (2010), Article ID 528956, 15 pages, (2010)
Motsa, S., Shateyi, S.: A new approach for the solution of three-dimensional magnetohydrodynamic rotating flow over a shrinking sheet. Math. Prob. Eng., (2010), Article ID 586340, (2010)
Daoud, Y., Mohammed, M.A., Khidir, A.: On magneto-hydrodynamics three dimensional flow due to a stretching sheet in a porous medium using the successive linearization method. Chines J. Phys. 73, 232–238 (2021)
MathSciNet
Article
Google Scholar
Mohammed, M.A., Mohammed, M., Khidir, A.: The effects of cross-diffusion and radiation on mixed convection from a vertical flat plate embedded in a fluid-saturated porous medium in the presence of viscous dissipation. J. Propul. Power Res. 5, 149–163 (2016)
Article
Google Scholar
Khidir, A., Abdulrahman A.: On successive linearization method for differential equations with nonlinear conditions. Int. J. Non. Sci. Num. Sim., (2021). https://doi.org/10.1515/ijnsns-2019-0278
Khidir, A., Salihah, A.: Application of successive linearisation method on the boundary layer flow problem of heat and mass transfer with radiation effect. Int. J. Anal. Appl. 19, 725–742 (2021)
Google Scholar
Mohammed, M.A., Mohammed, M., Khidir, A.: On linearization method to MHD boundary layer convective heat transfer with low pressure gradient. J. Propul. Power Res. 4, 105–113 (2015)
Article
Google Scholar
Mohammed, M.A., Mohammed, M., Khidir, A.: A successive linearization method approach for solving general boundary layer problems. Int. J. Appl. Math. Mech. 10, 55–72 (2014)
Google Scholar
Babolian, E., Davari, A.: Numerical implementation of Adomian decomposition method for linear Volterra integral equations of the second kind. App. Math. Comput. 165, 223–227 (2005)
MathSciNet
Article
Google Scholar
Don, W., Solomonoff, A.: Accuracy and speed in computing the Chebyshev Collocation Derivative. SIAM J. Sci. Comput. 16, 1253–1268 (1995)
MathSciNet
Article
Google Scholar
Trefethen, L. N.: Spectral Methods in MATLAB. SIAM, (2000)
Canuto, C., Hussaini, M., Quarteroni, A., Zang, T.: Spectral Methods in Fluid Dynamics. Springer-Verlag, Berlin (1988)
Book
Google Scholar
Larson, R., David, C.: Elementary Linear Algebra, 6th edn. Houghton Mifflin Harcourt Publishing Company Boston, New York (2008)
Google Scholar
Mustafa, M.M.: Solving linear Volterra-Fredholm integral equation of the Second type using linear programming method. Baghdad Sci. J. 17, 342–347 (2020)
Article
Google Scholar
Sorkun, H., Yalcinbas, S.: Approximate solutions of linear Volterra integral equation systems with variable coefficients. App. Math. Mod. 34, 3451–3464 (2010)
MathSciNet
Article
Google Scholar
Sathar, M., Rasedee, A., Ahmedov, A., Bachok, N.: Numerical solution of nonlinear Fredholm and Volterra integrals by Newton-Kantorovich and Haar wavelets methods. Symmetry, (2020). https://doi.org/10.3390/sym12122034.
Saberi-Nadjafi, J., Heidari, M.: Solving nonlinear integral equations in the Urysohn form by Newton-Kantorovich-quadrature method. Comput. Math. Appl. 60, 2058–2065 (2010)
MathSciNet
Article
Google Scholar