Skip to main content
Log in

SEIRS epidemic model with Caputo–Fabrizio fractional derivative and time delay: dynamical analysis and simulation

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

SEIRS epidemic model with Caputo–Fabrizio fractional derivative, a general incidence rate, and the time delay is considered. The main target of this work is to analyze the stability behavior and develop a numerical simulation of the fractional SEIRS model. The reproduction number \({R}_{0}\) and the order of the fractional derivative \(\beta \) play an important role in controlling the stability of the equilibrium points of the model, where it was shown that the disease-free equilibrium point \({P}_{0}\) is asymptotically stable if \({R}_{0}<1\) and unstable for \({R}_{0}>1\). The proper choice of the system parameters alongside the order of differentiation guarantee that the epidemic equilibrium point \({P}_{1}\) is asymptotically stable. The presence of a time delay in treatment and its effect on the stability behavior of the model is considered. Also, bifurcation analysis of the model depending on the time delay, \( \beta \) and the treatment rate is discussed. Numerical simulations based on a three-step Adams–Bashforth predictor technique for supporting and validating the theoretical results have been illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Li, J., Yang, Y., Zhou, Y.: Global stability of an epidemic-model with latent stage and vaccination. Nonlinear Anal.-Real World Appl. 12, 2163–2173 (2011)

    Article  MathSciNet  Google Scholar 

  2. Rodrigues, H.S., Teres, M., Monteiro, T., Torres, D.F.M.: Vaccination models and optimal control strategies to dengue. Math. Biosci. 247, 1–12 (2014)

    Article  MathSciNet  PubMed  Google Scholar 

  3. Abhishek, K., Nilam, R.K.: A short study of an SIR model with inclusion of an alert class, two explicit nonlinear incidence rates and saturated treatment rate. SeMA J. 76, 505–519 (2019)

    Article  MathSciNet  Google Scholar 

  4. El-sheikh, M.M.A., El-marouf, S.A.A.: On stability and bifurcation of solutions of an SEIR epidemic model with vertical transmission. IJMMS 65, 2971–2987 (2004)

    MathSciNet  Google Scholar 

  5. Ranjit, K.U., Ashok, K.P., Sangeeta, K., Parimita, R.: Dynamics of an SEIR epidemic model with nonlinear incidence and treatment rates. Nonlinear Dyn. 96, 2351–2368 (2019)

    Article  Google Scholar 

  6. Xie, Y., Wang, Z., Junwei, Lu., Li, Y.: Stability analysis and control strategies for a new SIS epidemic model in heterogeneous networks. Appl. Math. Comput. 383, 1–11 (2020). https://doi.org/10.1016/j.amc.2020.12538

    Article  MathSciNet  Google Scholar 

  7. Eckalbar, J.C., Eckalbar, W.L.: Dynamics of an epidemic model with quadratic treatment. Nonlinear Anal. 12, 320–332 (2011)

    Article  MathSciNet  Google Scholar 

  8. Helong, L., Houbo, X., Jingyuan, Y., Guangtian, Z.: Stability on coupling SIR epidemic model with vaccination. J. Appl. Math. 4, 301–319 (2005)

    MathSciNet  Google Scholar 

  9. Agarwal, M., Bhadauria, A.S.: Modeling H1N1 flu epidemic with contact tracing and quarantine. Int. J. Biomath. 5, 38–57 (2012)

    Article  MathSciNet  Google Scholar 

  10. Kou, C.H., Yan, Y., Liu, J.: Stability analysis for fractional differential equations and their applications in models of HIV-1 infection. Comput. Mod. Eng. Sci. 39, 301–317 (2009)

    MathSciNet  Google Scholar 

  11. Mukandavir, Z., Das, P., Cgiyaka, C., Nyabadza, F.: Global analysis of an HIV|AIDS epidemic model, world. J. Mod. Simul. 6, 231–240 (2010)

    Google Scholar 

  12. Cai, L., Li, L., Ghosh, M., Guo, B.: Stability analysis of an HIV/AIDS epidemic model with treatment. J. Comput. Appl. Math. 229, 313–323 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  13. Abdulrazak, A.J., Ibrahim, M.O., Usman, I.O.: A seiv vaccination model with general non-linear incidence rate and waning preventive-vaccine. IOSR J. Math. 4, 44–51 (2012)

    Article  Google Scholar 

  14. Dan, L., Zhongyi, X.: One the study of an SEIV epidemic model concerning vaccination and vertical transmission. J. Appl. Math. Bioinform. 1, 21–30 (2011)

    Google Scholar 

  15. Mei, B., Lishun, R.: An SEIV epidemic model for childhood diseases with partial permanent immunity. Comput. Math. Methods Med. 1, 1–13 (2015)

    MathSciNet  Google Scholar 

  16. Xueyong, Z., Jingan, C.: Analysis of stability and bifurcation for an SEIV epidemic model vaccination and nonlinear incidence rates. Nonlinear Dyn. 63, 639–653 (2011)

    Article  MathSciNet  Google Scholar 

  17. Li-Ming, C., Xue-Zhi, L.: Analysis of a SEIV epidemic model with a nonlinear incidence rat. Appl. Math. Model. 33, 2919–2926 (2009)

    Article  MathSciNet  Google Scholar 

  18. Hikal, M.M.: Dynamic properties for a general SEIV epidemic model. Electron. J. Math. Anal. Appl. 2, 26–36 (2014)

    MathSciNet  Google Scholar 

  19. Marek, B.T.: Deterministic seirs epidemic model for modeling vital dynamics, vaccinations, and temporary immunity. Mathematics 5(1–19), 1–19 (2017)

    Google Scholar 

  20. Adebimpe, O., Waheed, A.A., Gbadamosi, B.: Modeling and analysis of an SEIRS epidemic model with saturated incidence. J. Eng. Res. Appl. 3, 1111–1116 (2013)

    Google Scholar 

  21. Soovoojeet, J., Palash, H., Swapan, K.N., Kar, T.K.: Global dynamics of a SEIRS epidemic model with saturated disease transmission rate and vaccination control. Int. J. Appl. Comput. Math. 4, 301–319 (2005)

    Google Scholar 

  22. Xie, Y., Wang, Z., Meng, Bo., Huang, X.: Dynamical analysis for a fractional-order prey-predator model with Holling III type functional response and discontinuous harvest. Appl. Math. Lett. 106, 1–8 (2020). https://doi.org/10.1016/j.aml.2020.106342

    Article  MathSciNet  Google Scholar 

  23. Xie, Y., Wang, Z., Shen, H., Li, Y.: The dynamics of a delayed generalized fractional-order biological networks with predation behavior and material cycle. Nonlinear Anal. Model. Control 25(5), 745–765 (2020). https://doi.org/10.15388/namc.2020.25.18391

    Article  MathSciNet  Google Scholar 

  24. Saeedian, M., Khalighi, M., Azimi-Tafreshi, N., Jafari, G.R., Ausloos, M.: Memory effects on epidemic evolution: the susceptible-infected-recovered epidemic model. Phys. Rev. 95, 022409 (2017)

    ADS  MathSciNet  CAS  Google Scholar 

  25. Ram, N., Agraj, T., Dileep, S.: A non linear AIDS epidemic model with screening and time delay. App. Math. Comput. 217, 4416–4426 (2011)

    Article  Google Scholar 

  26. Hikal, M.M., Elsheikh, M.M.A., Zahra, W.K.: Stability analysis of COVID-19 model with fractional-order derivative and a delay in implementing the quarantine strategy. J. Appl. Math. Comput. (2021). https://doi.org/10.1007/s12190-021-01515-y

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hikal, M.M., El-Sheikh, M.M.A.: Stability of a general SEIV epidemic model with time delay. In: 11 th international conference of numerical analysis and applied mathematics ICNAAM 2013 Rhodes. AIP Conference Proceedings, vol. 1558, pp. 564–567 (2013)

  28. Culshaw, R.V., Ruan, S.: A delay-differential equation model of HIV infection of CD+ 4 T-cells. Math. Biosci. 165, 27–39 (2000)

    Article  CAS  PubMed  Google Scholar 

  29. Mukandavir, Z., Garira, W., Chiyaka, C.: Asymptotic properties of an HIV/AIDS model with a time delay. J. Math. Anal. Appl. 330, 916–933 (2007)

    Article  MathSciNet  Google Scholar 

  30. Hikal, M.M., Zahra, W.K.: On fractional model of an HIV/AIDS with treatment and time delay. Progr. Fract. Differ. Appl. 2, 55–66 (2016)

    Article  Google Scholar 

  31. Zahra, W.K., Hikal, M.M., Taher, A.B.: Stability analysis of an HIV/AIDS epidemic fractional order model with screening and time delay. AASCIT Commun. 2, 41–49 (2015)

    Google Scholar 

  32. Moore, E.J., Sirisubtawee, S., Koonprasert, S.: A Caputo–Fabrizio fractional differential equation model for HIV/AIDS with treatment compartment. Adv. Differ. Equ. 200, 1–20 (2019)

    MathSciNet  Google Scholar 

  33. Losada, J., Nieto, J.J.: Properties of a new fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2), 87–92 (2015)

    Google Scholar 

  34. Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2), 1–13 (2015)

    Google Scholar 

  35. Driessche, V.D., Watmough, P.J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 24–48 (2002)

    MathSciNet  Google Scholar 

  36. Ahmed, E., El-Sayed, A.M.A., El-Saka, H.A.A.: On some Routh–Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rossler, Chua and Chen systems. Phys. Lett. 358, 1–4 (2006)

    Article  MathSciNet  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. K. Zahra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hikal, M.M., Atteya, T.E.M., Hemeda, H.M. et al. SEIRS epidemic model with Caputo–Fabrizio fractional derivative and time delay: dynamical analysis and simulation. Ricerche mat 73, 1085–1119 (2024). https://doi.org/10.1007/s11587-021-00643-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-021-00643-8

Keywords

Mathematics Subject Classification

Navigation