Skip to main content
Log in

Analysis of Joule heating in a chemically reactive flow of time dependent Carreau-nanofluid over an axisymmetric radially stretched sheet using Cattaneo–Christov heat flux model

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

This paper concentrates on the examination of mass and heat transfer on a time-dependent hydromagnetic flow of Carreau-nanofluid on a radially stretchable surface. The heat equation is modeled by the incorporation of modified heat flux recognized as the Cattaneo–Christov heat flux theory along with the Joule heating. Also, for nanofluid flow, the Buongiornos model is employed to investigate the impacts of thermophoresis parameter and Brownian motion. In addition, a first-order chemical reaction is also assumed in the nanoparticle concentration equation. Flow phenomena are developed mathematically by considering momentum, nanoparticle concentration, and energy equations by utilizing conveniently transformed variables. Numerical solutions of the obtained differential equation are computed by employing the shooting method for thermal relaxation and chemical reaction parameters as shear thinning and shear thickening fluids. The consequences of various physical parameters on the flow, energy, and nanoparticle concentration are investigated and discussed via graphs and tables. Also, the variation in wall heat flux and wall mass flux are computed numerically. The present analysis admits that the temperature and the associated thermal boundary layer thickness are the growing functions of thermal relaxation parameters for both shear thickening and shear-thinning fluids. The concentration of the nanoparticle is also decreasing the function of the chemical reaction parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Sakiadis, B.C.: Boundary-layer behavior on continuous solid surfaces: I. Boundary-layer equations for two-dimensional and axisymmetric flow. AIChE J. 7(1), 26–28 (1961)

    Article  CAS  ADS  Google Scholar 

  2. Martins, R.R., Silveira, F.S., Martins-Costa, M.L.: Numerical investigation of inertia and shear-thinning effects in axisymmetric flows of Carreau fluids by a Galerkin least-squares method. Lat. Am. Appl. Res. 38(4), 321–328 (2008)

    Google Scholar 

  3. Sajid, M., Ahmad, I., Hayat, T., Ayub, M.: Series solution for unsteady axisymmetric flow and heat transfer over a radially stretching sheet. Commun. Nonlinear Sci. Numer. Simul. 13(10), 2193–2202 (2008)

    Article  ADS  Google Scholar 

  4. Khan, M., Shahzad, A.: On axisymmetric flow of Sisko fluid over a radially stretching sheet. Int. J. Non-Linear Mech. 47(9), 999–1007 (2012)

    Article  ADS  Google Scholar 

  5. Azam, M., Khan, M., Alshomrani, A.S.: Effects of magnetic field and partial slip on unsteady axisymmetric flow of Carreau nanofluid over a radially stretching surface. Results Phys. 7, 2671–2682 (2017)

    Article  ADS  Google Scholar 

  6. Khan, M., Azam, M., Munir, A.: On unsteady Falkner-Skan flow of MHD Carreau nanofluid past a static/moving wedge with convective surface condition. J. Mol. Liq. 230, 48–58 (2017)

    Article  CAS  Google Scholar 

  7. Hayat, T., Aziz, A., Muhammad, T., Alsaedi, A.: An optimal analysis for Darcy-Forchheimer 3D flow of Carreau nanofluid with convectively heated surface. Results Phys. 9, 598–608 (2018)

    Article  ADS  Google Scholar 

  8. Hsiao, K.L.: To promote radiation electrical MHD activation energy thermal extrusion manufacturing system efficiency by using Carreau-Nanofluid with parameters control method. Energy 130, 486–499 (2017)

    Article  Google Scholar 

  9. Khan, M., Malik, M.Y., Salahuddin, T., I.mad Khan, : Numerical modeling of Carreau fluid due to variable thicked surface. Results Phys. 7, 2384–2390 (2017)

    Article  ADS  Google Scholar 

  10. Abbas, Z., Imran, M., Naveed, M.: Hydromagnetic flow of a Carreau fluid in a curved channel with non-linear thermal radiation. Therm. Sci. 23(6), 3379–3390 (2019)

    Article  Google Scholar 

  11. Sadiq, K., Jarad, F., Siddique, I., Ali, B.: Soret and radiation effects on mixture of ethylene glycol-water (50%-50%) based maxwell nanofluid flow in an upright channel. complexity 2021 (2021)

  12. Ali, B., Hussain, S., Nie, Y., Hussein, A.K., Habib, D.: Finite element investigation of Dufour and Soret impacts on MHD rotating flow of Oldroyd-B nanofluid over a stretching sheet with double diffusion Cattaneo Christov heat flux model. Powder Technol. 377, 439–452 (2021)

    Article  CAS  Google Scholar 

  13. Ali, Bagh, Hussain, S., Nie, Y., Khan, S.A., Naqvi, S.I.R.: Finite element simulation of bioconvection Falkner–Skan flow of a Maxwell nanofluid fluid along with activation energy over a wedge. Phys. Scr. 95(9), 095214 (2020)

    Article  CAS  ADS  Google Scholar 

  14. Naveed, M., Imran, M., Abbas, Z.: Curvilinear flow of micropolar fluid with Cattaneo–Christov heat flux model due to oscillation of curved stretchable sheet. Zeitschrift für Naturforschung A (2021)

  15. Imran, M., Abbas Z., Naveed M.: Flow of eyring-powell liquid due to oscillatory stretchable curved sheet with modified Fourier and Fick’s model. Appl. Math. Mech. (2021) (In Press)

  16. Choi, S. U. S., Eastman, J. A.: Enhancing thermal conductivity of fluids with nanoparticles. No. ANL/MSD/CP-84938; CONF-951135–29. Argonne National Lab., IL (United States) (1995)

  17. Eastman, J.A., Choi, S.U.S., Li, S., Yu, W., Thompson, L.J.: Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 78(6), 718–720 (2001)

    Article  CAS  ADS  Google Scholar 

  18. Tiwari, R.K., Das, M.K.: Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int. J. Heat Mass Transf. 50(9–10), 2002–2018 (2007)

    Article  CAS  Google Scholar 

  19. Buongiorno, J.: Convective transport in nanofluids, pp. 240–250 (2006)

  20. Kuznetsov, A.V., Nield, D.A.: Natural convective boundary-layer flow of a nanofluid past a vertical plate. Int. J. Therm. Sci. 49(2), 243–247 (2010)

    Article  CAS  Google Scholar 

  21. Sheikholeslami, M., Ganji, D.D., Rashidi, M.M.: Magnetic field effect on unsteady nanofluid flow and heat transfer using Buongiorno model. J. Magn. Magn. Mater. 416, 164–173 (2016)

    Article  CAS  ADS  Google Scholar 

  22. Fourier, J.B.J.: Theorie analytique De La chaleur, Paris (1822)

  23. Cattaneo, C.: Sulla conduzione del calore. Atti Sem. Mat. Fis. Univ. Modena 3, 83–101 (1948)

    MathSciNet  Google Scholar 

  24. Christov, C.I.: On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction. Mech. Res. Commun. 36(4), 481–486 (2009)

    Article  MathSciNet  Google Scholar 

  25. Khan, M.: On Cattaneo-Christov heat flux model for Carreau fluid flow over a slendering sheet. Results Phys. 7, 310–319 (2017)

    Article  ADS  Google Scholar 

  26. Abbas, Z., Rafiq, M., Naveed, M.: Analysis of Eyring-Powell liquid flow in curved channel with Cattaneo-Christov heat flux model. J. Braz. Soc. Mech. Sci. Eng. 40(8), 1–10 (2018)

    Article  Google Scholar 

  27. Doh, D.H., Cho, G.R., Ramya, E., Muthtamilselvan, M.: Cattaneo-Christov heat flux model for inclined MHD micropolar fluid flow past a non-linearly stretchable rotating disk. Case Stud. Thermal Eng. 14, 100496 (2019)

    Article  Google Scholar 

  28. Ali, B., Nie, Y., Hussain, S., Habib, D., Abdal, S.: Insight into the dynamics of fluid conveying tiny particles over a rotating surface subject to Cattaneo-Christov heat transfer, Coriolis force, and Arrhenius activation energy. Comput. Math. Appl. 93, 130–143 (2021)

    Article  MathSciNet  Google Scholar 

  29. Nayak, B., Mishra, S.R., Krishna, G.G.: Chemical reaction effect of an axisymmetric flow over radially stretched sheet. Propuls. Power Res. 8(1), 79–84 (2019)

    Article  Google Scholar 

  30. Rasool, G., Zhang, T.: Characteristics of chemical reaction and convective boundary conditions in Powell-Eyring nanofluid flow along a radiative Riga plate. Heliyon 5(4), e01479 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Irfan, M., Khan, W.A., Khan, M., Gulzar, M.M.: Influence of Arrhenius activation energy in chemically reactive radiative flow of 3D Carreau nanofluid with nonlinear mixed convection. J. Phys. Chem. Solids 125, 141–152 (2019)

    Article  CAS  ADS  Google Scholar 

  32. Sajid, M., Iqbal, S.A., Naveed, M., Abbas, Z.: Joule heating and magnetohydrodynamic effects on ferrofluid (Fe3O4) flow in a semi-porous curved channel. J. Mol. Liq. 222, 1115–1120 (2016)

    Article  CAS  Google Scholar 

  33. Khan, I., Malik, M.Y., Hussain, A., Khan, M.: Magnetohydrodynamics Carreau nanofluid flow over an inclined convective heated stretching cylinder with Joule heating. Results Phys. 7, 4001–4012 (2017)

    Article  ADS  Google Scholar 

  34. Rehman, K.U., Khan, A.A., Malik, M.Y., Pradhan, R.K.: Combined effects of Joule heating and chemical reaction on non-Newtonian fluid in double stratified medium: a numerical study. Results Phys. 7, 3487–3496 (2017)

    Article  ADS  Google Scholar 

  35. Imran, M., Abbas, Z., Naveed, M., Salamat, N.: Impact of Joule heating and melting on time-dependent flow of nanoparticles due to an oscillatory stretchable curved wall. Alex. Eng. J. 60(4), 4097–4113 (2021)

    Article  Google Scholar 

  36. Makinde, O.D., Mahmood, F., Khan, W.A., Tshela, M.S.: MHD flow of a variable viscosity nanofluid over a radially stretching surface with radiative heat. J. Mol. Liq. 219, 624–630 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the respected reviewers for their positive comments and constructive ideas for improving the manuscript’s quality.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Naveed or Z. Abbas.

Ethics declarations

Conflict of interest

I and all the concerned coauthors have no conflict in submitting the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naveed, M., Awais, M., Abbas, Z. et al. Analysis of Joule heating in a chemically reactive flow of time dependent Carreau-nanofluid over an axisymmetric radially stretched sheet using Cattaneo–Christov heat flux model. Ricerche mat 73, 755–772 (2024). https://doi.org/10.1007/s11587-021-00641-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-021-00641-w

Keywords

Mathematics Subject Classification

Navigation