Abstract
In this work, we study a parallel viscosity extragradient method for approximating a common solution of a finite system of pseudomonotone equilibrium problems and common fixed point problem for nonexpansive mappings in Hadamard spaces. We propose an iterative method and prove its strong convergence to an element in the intersection of the solution set of finite system of equilibrium problems and the fixed points set of nonexpansive mappings. Furthermore, we give an example in a Hadamard space which is not an Hilbert space to support the convergence theorem in the paper. This result generalizes and extends recent results in the literature.
Similar content being viewed by others
References
Aibinu, M.O., Kim, J.K.: On the rate of convergence of viscosity implicit iterative algorithms. Nonlinear Funct. Anal. Appl. 25(1), 135–152 (2020). https://doi.org/10.22771/nfaa.2020.25.01.10
Anh, T.V., Muu, L.D.: Parallel algorithms for solving a class of variational inequalities over the common fixed points set of a finite family of demicontractive mappings. Numer. Funct. Anal. Optim. 39(14), 1477–1494 (2018). https://doi.org/10.1080/01630563.2018.1485695
Ansari, Q.H., Rehan, A.: Split feasibility and fixed point problems. In: Ansari, Q.H. (ed.) it Nonlinear Analysis: Approximation Theory, Optimization and Application., pp. 281–322. Springer, New York (2014)
Aremu, K.O., Izuchukwu, C., Mebawondu, A.A., Mewomo, O.T.: A viscosity type proximal point algorithm for monotone equilibrium problem and fixed point problem in a Hadamard space. Asian Eur. J. Math. 2150058, 24 (2020). https://doi.org/10.1142/S1793557121500583
Aremu, K.O., Jolaoso, L.O., Izuchukwu, C., Mewomo, O.T.: Approximation of common solution of finite family of monotone inclusion and fixed point problems for demicontractive multivalued mappings in CAT(0) Spaces. Ricerche Mat. 69, 13–34 (2020). https://doi.org/10.1007/s11587-019-00446-y
Berg, I.D., Nikolaev, I.G.: Quasilinearization and curvature of Alexandrov spaces. Geom. Dedicata 133, 195–218 (2008)
Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63, 123–145 (1994)
Bokodisa, A.T., Jolaoso, L.O., Aphane, M.: A parallel hybrid Bregman subgradient extragradient method for a system of pseudomonotone equilibrium and fixed point problems. Symmetry 3, 216 (2021). https://doi.org/10.3390/sym13020216
Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projections in a product space. Numer. Algorithms 8(2), 221–239 (1994)
Censor, Y., Elfving, T., Kopf, N., Bortfeld, T.: The multiple-sets split feasibility problem and its applications for inverse problems. Inverse Probl. 21, 2071–2084 (2005)
Censor, Y., Bortfeld, T., Martin, B., Trofimov, A.: A unified approach for inversion problems in intensity-modulated radiation therapy. Phys. Med. Biol. 51, 2353–2365 (2006)
Censor, Y., Gibali, A., Reich, S.: The subgradient extragradient method for solving variational inequalities in Hilbert space. J. Optim. Theory Appl. 148, 318–335 (2011)
Chidume, C. E., Bello, A .U., Ndambomve, P.: Strong and \(\Delta \)-convergence theorems for common fixed points of a finite family of multivalued demicontractive mappings in CAT(0) spaces. Abstr. Appl. Anal. (2014) Article ID 805168
Colao, V., Lopez, G., Marino, G., Martín-Márquez, V.: Equilibrium problems in Hadamard manifolds. J. Math. Anal. Appl. 388, 61–77 (2012)
Dehghan, H., Rooin, J.: Metric projection and convergence theorems for nonexpansive mapping in Hadamard spaces. arXiv:1410.1137VI [math.FA], 5 Oct. (2014)
Dhompongsa, S., Kirk, W.A., Sims, B.: Fixed points of uniformly Lipschitzian mappings. Nonlinear Anal. 65(4), 762–772 (2006)
Dhompongsa, S., Panyanak, B.: On \(\triangle \)-convergence theorems in CAT(0) spaces. Comput. Math. Appl. 56, 2572–2579 (2008)
Dhompongsa, S., Kirk, W.A., Panyanak, B.: Nonexpansive set-valued mappings in metric and Banach spaces. J. Nonlinear Convex Anal. 8, 35–45 (2007)
Fan, K.: A minimax inequality and applications. In: O. shisha (Ed) Inequalities III, pp. 103–113 Academic Press, New York NY, USA, (1972)
He, B.S.: A class of projection and contraction methods for monotone variational inequalities. Appl. Math. Optim. 69–76, 35 (1997)
Maingé, P.E.: Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization. Set-Valued Anal. 16, 899–912 (2008)
Markin, J.T.: Fixed points, selections and best approximation for multivalued mappings in \(\mathbb{R}-\)trees. Nonlinear Anal. 67, 2712–2716 (2007)
Hieu, D.V., Muu, L.D., Ahn, P.K.: Parallel hybrid extragradient methods for pseudomonotone equilibrium problems and nonexpansive mappings. Numer Algorithms. 73, 197–217 (2016). https://doi.org/10.1007/s11075-015-0092-5
Hieu, D.V.: Common solutions to pseudomonotone equilibrium problems. Bull. Iranian Math. Soc. 42(5), 1207–1219 (2016)
Hieu, D.V., Thai, B.H., Kumam, P.: Parallel modified methods for pseudomonotone equilibrium problems and fixed point problems for quasi-nonexpansive mappings. Adv. Oper. Theory 5, 1684–1717 (2020)
Iusem, A.N., Mohebbi, V.: Convergence analysis of the extragradient method for equilibrium problems in Hadamard spaces. Comput. Appl. Math. 39(2), 1–22 (2020). https://doi.org/10.1007/s40314-020-1076-1
Izuchukwu, C., Aremu, K.O., Mebawondu, A.A., Mewomo, O.T.: A viscosity iterative technique for equilibrium and fixed point problems in a Hadamard space. Appl. Gen. Topol. 20(1), 193–210 (2019)
Jolaoso, L. O., Alakoya, T.O., Taiwo, A., Mewomo, O.T.: An inertial extragradient method via viscoscity approximation approach for solving equilibrium problem in Hilbert spaces. Optimization (2020) 10.1080/02331934.2020.1716752
Jolaoso, L.O., Alakoya, T.O., Taiwo, A., Mewomo, O.T.: A parallel combination extragradient method with Armijo line searching for finding common solutions of finite families of equilibrium and fixed point problems. Rend. Circ. Mat. Palermo, II. Ser 69, 711–735 (2020)
Jolaoso, L.O., Aphane, M.: A self-adaptive inertial subgradient extragradient method for pseudomonotone equilibrium and common fixed point problems. Fixed Point Theory Appl. 2020, 9 (2020). https://doi.org/10.1186/s13663-020-00676-y
Jolaoso, L.O., Lukumon, G.A., Aphane, M.: Convergence theorem for system of pseudomonotone equilibrium and split common fixed point problems in Hilbert spaces. Boll. Unione Mat. Ital. (2021). https://doi.org/10.1007/s40574-020-00271-4
Kakavandi, B.A., Amini, M.: Duality and subdifferential for convex functions on complete CAT(0) metric spaces. Nonlinear Anal. 73, 3450–3455 (2010)
Khatibzadeh, H., Mohebbi, V.: Approximating solutions of equilibrium problems in Hadamard spaces. Miskolc Math. Notes 20, 281–297 (2019)
Kim, J.K., Salahuddin, S.: Extragradient methods for generalized mixed equilibrium problems and fixed point problems in Hilbert spaces. Nonlinear Funct. Anal. and Appl. 22(4), 693–709 (2017). https://doi.org/10.22771/nfaa.2017.22.04.01
Kimura, Y., Kishi, Y.: Equilibrium problems and their resolvents in Hadamard spaces. J. Nonlinear Convex Anal. 19(9), 1503–1513 (2018)
Kirk, W.A., Panyanak, B.: A concept of convergence in geodesic spaces. Nonlinear Anal. 68(12), 3689–3696 (2008)
Korpelevich, G.M.: The extragradient method for finding saddle points and other problems. Èkon. Mat. Metody 12, 747–756 (1976)
Kumam, P., Chaipunya, P.: Equilibrium problems and proximal algorithms in Hadamard Spaces. arXiv: 1807.10900v1 [math.oc] (28 Mar 2018)
Lim, T.C.: Remarks on some fixed point theorems. Proc. Amer. Math. Soc. 60, 179–182 (1976)
Muangchoo, K.: A viscosity type projection method for Solving pseudomonotone variational inequalities. Nonlinear Funct. Anal. and Appl. 26(2), 347–371 (2021). https://doi.org/10.22771/nfaa.2021.26.02.08
Muu, L.D., Oettli, W.: Convergence of an adaptive penalty scheme for finding constrained equilibria. Nonlinear Anal. 18, 1159–1166 (1992)
Nguyen, L.V.: An existence result for strongly pseudomonotone quasi-variational inequalities. Ricerche Mat. (2021). https://doi.org/10.1007/s11587-021-00588-y
Noor, M.A., Noor, K.: I.: Some algorithms for equilibrium problems on Hadamard manifolds. J. Inequal. Appl. 230, 8 pp (2012)
Ogbuisi, F.U., Mewomo, O.T.: Convergence analysis of common solution of certain nonlinear problems. Fixed Point Theory 19(1), 335–358 (2018)
Oyewole, O.K., Mewomo, O.T.: Existence results for new generalized mixed equilibrium and fixed point problems in Banach spaces. Nonlinear Funct. Anal. and Appl. 25(2), 273–301 (2020). https://doi.org/10.22771/nfaa.2020.25.02.06
Ranjbar, S., Khatibzadeh, H.: Convergence and w-convergence of modified Mann iteration for a family of asymptotically nonexpansive type mappings in complete CAT(0) spaces>. Fixed Point Theory 17, 151–158 (2016)
Sun, D.F.: A class of iterative methods for solving nonlinear projection equations. J. Optim. Theory Appl. 91, 123–140 (1996)
Taiwo, A., Jolaoso, L.O., Mewomo, O.T.: Parallel hybrid algorithm for solving pseudomonotone equilibrium and split common fixed point problems. Bull. Malays. Math. Sci. Soc. 43, 1893–1918 (2020). https://doi.org/10.1007/s40840-019-00781-1
Trans, D.Q., Muu, L.D., Nguyen, V.H.: Extragradient algorithms extended to equilibrium problems. Optim. 57, 749–776 (2008)
Ugwunnadi, G.C., Khan, A.R., Abbas, M.: A hybrid proximal point algorithm for finding minimizers and fixed points in CAT(0) spaces. J. Fixed Point Theory Appl. 20(2), 10.1007/s11784-018-0555–0 (2018)
Xiu, N.H., Zhang, J.Z.: Some recent advances in projection-type methods for variational inequalities. J. Comput. Appl. Math. 152, 559–587 (2003)
Xu, H.K.: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 66, 240–256 (2002)
Acknowledgements
The authors acknowledge with thanks, the Department of Mathematics and Applied Mathematics at the Sefako Makgatho Health Sciences University for making their facilities available for the research. O.K. Oyewole acknowledges with thanks the bursary and financial support from Department of Science and Technology and National Research Foundation, Republic of South Africa Center of Excellence in Mathematical and Statistical Sciences (DST-NRF COE-MaSS) Doctoral Bursary.
Funding
L.O. Jolaoso is supported by the Postdoctoral research grant from the Sefako Makgatho Health Sciences University, South Africa.
Author information
Authors and Affiliations
Contributions
All authors worked equally on the results and approved the final manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that there is not competing interest on the paper.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Aremu, K.O., Jolaoso, L.O., Aphane, M. et al. A parallel viscosity extragradient method for solving a system of pseudomonotone equilibrium problems and fixed point problems in Hadamard spaces. Ricerche mat 73, 819–840 (2024). https://doi.org/10.1007/s11587-021-00640-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11587-021-00640-x