Skip to main content
Log in

A parallel viscosity extragradient method for solving a system of pseudomonotone equilibrium problems and fixed point problems in Hadamard spaces

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

In this work, we study a parallel viscosity extragradient method for approximating a common solution of a finite system of pseudomonotone equilibrium problems and common fixed point problem for nonexpansive mappings in Hadamard spaces. We propose an iterative method and prove its strong convergence to an element in the intersection of the solution set of finite system of equilibrium problems and the fixed points set of nonexpansive mappings. Furthermore, we give an example in a Hadamard space which is not an Hilbert space to support the convergence theorem in the paper. This result generalizes and extends recent results in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Aibinu, M.O., Kim, J.K.: On the rate of convergence of viscosity implicit iterative algorithms. Nonlinear Funct. Anal. Appl. 25(1), 135–152 (2020). https://doi.org/10.22771/nfaa.2020.25.01.10

    Article  Google Scholar 

  2. Anh, T.V., Muu, L.D.: Parallel algorithms for solving a class of variational inequalities over the common fixed points set of a finite family of demicontractive mappings. Numer. Funct. Anal. Optim. 39(14), 1477–1494 (2018). https://doi.org/10.1080/01630563.2018.1485695

    Article  MathSciNet  Google Scholar 

  3. Ansari, Q.H., Rehan, A.: Split feasibility and fixed point problems. In: Ansari, Q.H. (ed.) it Nonlinear Analysis: Approximation Theory, Optimization and Application., pp. 281–322. Springer, New York (2014)

    Chapter  Google Scholar 

  4. Aremu, K.O., Izuchukwu, C., Mebawondu, A.A., Mewomo, O.T.: A viscosity type proximal point algorithm for monotone equilibrium problem and fixed point problem in a Hadamard space. Asian Eur. J. Math. 2150058, 24 (2020). https://doi.org/10.1142/S1793557121500583

    Article  Google Scholar 

  5. Aremu, K.O., Jolaoso, L.O., Izuchukwu, C., Mewomo, O.T.: Approximation of common solution of finite family of monotone inclusion and fixed point problems for demicontractive multivalued mappings in CAT(0) Spaces. Ricerche Mat. 69, 13–34 (2020). https://doi.org/10.1007/s11587-019-00446-y

    Article  MathSciNet  Google Scholar 

  6. Berg, I.D., Nikolaev, I.G.: Quasilinearization and curvature of Alexandrov spaces. Geom. Dedicata 133, 195–218 (2008)

    Article  MathSciNet  Google Scholar 

  7. Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63, 123–145 (1994)

    MathSciNet  Google Scholar 

  8. Bokodisa, A.T., Jolaoso, L.O., Aphane, M.: A parallel hybrid Bregman subgradient extragradient method for a system of pseudomonotone equilibrium and fixed point problems. Symmetry 3, 216 (2021). https://doi.org/10.3390/sym13020216

    Article  ADS  Google Scholar 

  9. Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projections in a product space. Numer. Algorithms 8(2), 221–239 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  10. Censor, Y., Elfving, T., Kopf, N., Bortfeld, T.: The multiple-sets split feasibility problem and its applications for inverse problems. Inverse Probl. 21, 2071–2084 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  11. Censor, Y., Bortfeld, T., Martin, B., Trofimov, A.: A unified approach for inversion problems in intensity-modulated radiation therapy. Phys. Med. Biol. 51, 2353–2365 (2006)

    Article  PubMed  Google Scholar 

  12. Censor, Y., Gibali, A., Reich, S.: The subgradient extragradient method for solving variational inequalities in Hilbert space. J. Optim. Theory Appl. 148, 318–335 (2011)

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chidume, C. E., Bello, A .U., Ndambomve, P.: Strong and \(\Delta \)-convergence theorems for common fixed points of a finite family of multivalued demicontractive mappings in CAT(0) spaces. Abstr. Appl. Anal. (2014) Article ID 805168

  14. Colao, V., Lopez, G., Marino, G., Martín-Márquez, V.: Equilibrium problems in Hadamard manifolds. J. Math. Anal. Appl. 388, 61–77 (2012)

    Article  MathSciNet  Google Scholar 

  15. Dehghan, H., Rooin, J.: Metric projection and convergence theorems for nonexpansive mapping in Hadamard spaces. arXiv:1410.1137VI [math.FA], 5 Oct. (2014)

  16. Dhompongsa, S., Kirk, W.A., Sims, B.: Fixed points of uniformly Lipschitzian mappings. Nonlinear Anal. 65(4), 762–772 (2006)

    Article  MathSciNet  Google Scholar 

  17. Dhompongsa, S., Panyanak, B.: On \(\triangle \)-convergence theorems in CAT(0) spaces. Comput. Math. Appl. 56, 2572–2579 (2008)

    Article  MathSciNet  Google Scholar 

  18. Dhompongsa, S., Kirk, W.A., Panyanak, B.: Nonexpansive set-valued mappings in metric and Banach spaces. J. Nonlinear Convex Anal. 8, 35–45 (2007)

    MathSciNet  Google Scholar 

  19. Fan, K.: A minimax inequality and applications. In: O. shisha (Ed) Inequalities III, pp. 103–113 Academic Press, New York NY, USA, (1972)

  20. He, B.S.: A class of projection and contraction methods for monotone variational inequalities. Appl. Math. Optim. 69–76, 35 (1997)

    MathSciNet  Google Scholar 

  21. Maingé, P.E.: Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization. Set-Valued Anal. 16, 899–912 (2008)

    Article  MathSciNet  Google Scholar 

  22. Markin, J.T.: Fixed points, selections and best approximation for multivalued mappings in \(\mathbb{R}-\)trees. Nonlinear Anal. 67, 2712–2716 (2007)

    Article  MathSciNet  Google Scholar 

  23. Hieu, D.V., Muu, L.D., Ahn, P.K.: Parallel hybrid extragradient methods for pseudomonotone equilibrium problems and nonexpansive mappings. Numer Algorithms. 73, 197–217 (2016). https://doi.org/10.1007/s11075-015-0092-5

    Article  MathSciNet  Google Scholar 

  24. Hieu, D.V.: Common solutions to pseudomonotone equilibrium problems. Bull. Iranian Math. Soc. 42(5), 1207–1219 (2016)

    MathSciNet  Google Scholar 

  25. Hieu, D.V., Thai, B.H., Kumam, P.: Parallel modified methods for pseudomonotone equilibrium problems and fixed point problems for quasi-nonexpansive mappings. Adv. Oper. Theory 5, 1684–1717 (2020)

    Article  MathSciNet  Google Scholar 

  26. Iusem, A.N., Mohebbi, V.: Convergence analysis of the extragradient method for equilibrium problems in Hadamard spaces. Comput. Appl. Math. 39(2), 1–22 (2020). https://doi.org/10.1007/s40314-020-1076-1

    Article  MathSciNet  Google Scholar 

  27. Izuchukwu, C., Aremu, K.O., Mebawondu, A.A., Mewomo, O.T.: A viscosity iterative technique for equilibrium and fixed point problems in a Hadamard space. Appl. Gen. Topol. 20(1), 193–210 (2019)

    Article  MathSciNet  Google Scholar 

  28. Jolaoso, L. O., Alakoya, T.O., Taiwo, A., Mewomo, O.T.: An inertial extragradient method via viscoscity approximation approach for solving equilibrium problem in Hilbert spaces. Optimization (2020) 10.1080/02331934.2020.1716752

  29. Jolaoso, L.O., Alakoya, T.O., Taiwo, A., Mewomo, O.T.: A parallel combination extragradient method with Armijo line searching for finding common solutions of finite families of equilibrium and fixed point problems. Rend. Circ. Mat. Palermo, II. Ser 69, 711–735 (2020)

    Article  MathSciNet  Google Scholar 

  30. Jolaoso, L.O., Aphane, M.: A self-adaptive inertial subgradient extragradient method for pseudomonotone equilibrium and common fixed point problems. Fixed Point Theory Appl. 2020, 9 (2020). https://doi.org/10.1186/s13663-020-00676-y

    Article  MathSciNet  Google Scholar 

  31. Jolaoso, L.O., Lukumon, G.A., Aphane, M.: Convergence theorem for system of pseudomonotone equilibrium and split common fixed point problems in Hilbert spaces. Boll. Unione Mat. Ital. (2021). https://doi.org/10.1007/s40574-020-00271-4

    Article  MathSciNet  Google Scholar 

  32. Kakavandi, B.A., Amini, M.: Duality and subdifferential for convex functions on complete CAT(0) metric spaces. Nonlinear Anal. 73, 3450–3455 (2010)

    Article  MathSciNet  Google Scholar 

  33. Khatibzadeh, H., Mohebbi, V.: Approximating solutions of equilibrium problems in Hadamard spaces. Miskolc Math. Notes 20, 281–297 (2019)

    Article  MathSciNet  Google Scholar 

  34. Kim, J.K., Salahuddin, S.: Extragradient methods for generalized mixed equilibrium problems and fixed point problems in Hilbert spaces. Nonlinear Funct. Anal. and Appl. 22(4), 693–709 (2017). https://doi.org/10.22771/nfaa.2017.22.04.01

    Article  Google Scholar 

  35. Kimura, Y., Kishi, Y.: Equilibrium problems and their resolvents in Hadamard spaces. J. Nonlinear Convex Anal. 19(9), 1503–1513 (2018)

    MathSciNet  Google Scholar 

  36. Kirk, W.A., Panyanak, B.: A concept of convergence in geodesic spaces. Nonlinear Anal. 68(12), 3689–3696 (2008)

    Article  MathSciNet  Google Scholar 

  37. Korpelevich, G.M.: The extragradient method for finding saddle points and other problems. Èkon. Mat. Metody 12, 747–756 (1976)

    MathSciNet  Google Scholar 

  38. Kumam, P., Chaipunya, P.: Equilibrium problems and proximal algorithms in Hadamard Spaces. arXiv: 1807.10900v1 [math.oc] (28 Mar 2018)

  39. Lim, T.C.: Remarks on some fixed point theorems. Proc. Amer. Math. Soc. 60, 179–182 (1976)

    Article  MathSciNet  Google Scholar 

  40. Muangchoo, K.: A viscosity type projection method for Solving pseudomonotone variational inequalities. Nonlinear Funct. Anal. and Appl. 26(2), 347–371 (2021). https://doi.org/10.22771/nfaa.2021.26.02.08

    Article  MathSciNet  Google Scholar 

  41. Muu, L.D., Oettli, W.: Convergence of an adaptive penalty scheme for finding constrained equilibria. Nonlinear Anal. 18, 1159–1166 (1992)

    Article  MathSciNet  Google Scholar 

  42. Nguyen, L.V.: An existence result for strongly pseudomonotone quasi-variational inequalities. Ricerche Mat. (2021). https://doi.org/10.1007/s11587-021-00588-y

    Article  Google Scholar 

  43. Noor, M.A., Noor, K.: I.: Some algorithms for equilibrium problems on Hadamard manifolds. J. Inequal. Appl. 230, 8 pp (2012)

    MathSciNet  Google Scholar 

  44. Ogbuisi, F.U., Mewomo, O.T.: Convergence analysis of common solution of certain nonlinear problems. Fixed Point Theory 19(1), 335–358 (2018)

    Article  MathSciNet  Google Scholar 

  45. Oyewole, O.K., Mewomo, O.T.: Existence results for new generalized mixed equilibrium and fixed point problems in Banach spaces. Nonlinear Funct. Anal. and Appl. 25(2), 273–301 (2020). https://doi.org/10.22771/nfaa.2020.25.02.06

    Article  Google Scholar 

  46. Ranjbar, S., Khatibzadeh, H.: Convergence and w-convergence of modified Mann iteration for a family of asymptotically nonexpansive type mappings in complete CAT(0) spaces>. Fixed Point Theory 17, 151–158 (2016)

    MathSciNet  Google Scholar 

  47. Sun, D.F.: A class of iterative methods for solving nonlinear projection equations. J. Optim. Theory Appl. 91, 123–140 (1996)

    Article  MathSciNet  Google Scholar 

  48. Taiwo, A., Jolaoso, L.O., Mewomo, O.T.: Parallel hybrid algorithm for solving pseudomonotone equilibrium and split common fixed point problems. Bull. Malays. Math. Sci. Soc. 43, 1893–1918 (2020). https://doi.org/10.1007/s40840-019-00781-1

    Article  MathSciNet  Google Scholar 

  49. Trans, D.Q., Muu, L.D., Nguyen, V.H.: Extragradient algorithms extended to equilibrium problems. Optim. 57, 749–776 (2008)

    Article  MathSciNet  Google Scholar 

  50. Ugwunnadi, G.C., Khan, A.R., Abbas, M.: A hybrid proximal point algorithm for finding minimizers and fixed points in CAT(0) spaces. J. Fixed Point Theory Appl. 20(2), 10.1007/s11784-018-0555–0 (2018)

    Article  MathSciNet  Google Scholar 

  51. Xiu, N.H., Zhang, J.Z.: Some recent advances in projection-type methods for variational inequalities. J. Comput. Appl. Math. 152, 559–587 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  52. Xu, H.K.: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 66, 240–256 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors acknowledge with thanks, the Department of Mathematics and Applied Mathematics at the Sefako Makgatho Health Sciences University for making their facilities available for the research. O.K. Oyewole acknowledges with thanks the bursary and financial support from Department of Science and Technology and National Research Foundation, Republic of South Africa Center of Excellence in Mathematical and Statistical Sciences (DST-NRF COE-MaSS) Doctoral Bursary.

Funding

L.O. Jolaoso is supported by the Postdoctoral research grant from the Sefako Makgatho Health Sciences University, South Africa.

Author information

Authors and Affiliations

Authors

Contributions

All authors worked equally on the results and approved the final manuscript.

Corresponding author

Correspondence to Kazeem Olalekan Aremu.

Ethics declarations

Conflict of interest

The authors declare that there is not competing interest on the paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aremu, K.O., Jolaoso, L.O., Aphane, M. et al. A parallel viscosity extragradient method for solving a system of pseudomonotone equilibrium problems and fixed point problems in Hadamard spaces. Ricerche mat 73, 819–840 (2024). https://doi.org/10.1007/s11587-021-00640-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-021-00640-x

Keywords

Mathematics Subject Classification

Navigation