Skip to main content

Global \(W^{1,p}\) regularity for elliptic problem with measure source and Leray–Hardy potential


In this paper, we develop the Littman–Stampacchia–Weinberger duality approach to obtain global \(W^{1,p}\) estimates for a class of elliptic problems involving Leray–Hardy operators and measure sources in a distributional framework associated to a dual formulation with a specific weight function.

This is a preview of subscription content, access via your institution.


  1. Bénilan, Ph., Brezis, H., Crandall, M.: A semilinear elliptic equation in \(L^1({\mathbb{R}}^{N})\). Ann. Sc. Norm. Sup. Pisa Cl. Sci. 2, 523–555 (1975)

  2. Cignoli, R., Cottlar, M.: An Introduction to Functional Analysis. North-Holland, Amsterdam (1974)

    Google Scholar 

  3. Bidaut-Véron, M., Philippe, G.: Asymptotic behaviour of the solutions of sublinear elliptic equations with a potential. Appl. Anal. 70, 233–258 (1999)

    MathSciNet  Article  Google Scholar 

  4. Brezis, H., Dupaigne, L., Tesei, A.: On a semilinear elliptic equation with inverse-square potential. Sel. Math. 11, 1–7 (2005)

    MathSciNet  Article  Google Scholar 

  5. Brezis, H., Marcus, M.: Hardy’s inequalities revisited. Ann. Sc. Norm. Super. Pisa Cl. Sci. 25(5), 217–237 (1997)

    MathSciNet  MATH  Google Scholar 

  6. Byun, S., Wang, L.: Elliptic equations with BMO coefficients in Reifenberg domains. Commun. Pure Appl. Math. 57(10), 1283–1310 (2004)

    MathSciNet  Article  Google Scholar 

  7. Byun, S., Palagachev, D.: Weighted \(L^p\)-estimates for elliptic equations with measurable coefficients in nonsmooth domains. Potential Anal. 41(1), 51–79 (2014)

    MathSciNet  Article  Google Scholar 

  8. Caffarelli, L., Peral, I.: On \(W^{1, p}\) estimates for elliptic equations in divergence form. Commun. Pure Appl. Math. 51, 1–21 (1998)

    Article  Google Scholar 

  9. Chaudhuri, N., Cîrstea, F.: On trichotomy of positive singular solutions associated with the Hardy–Sobolev operator. Comptes Rend. Math. 347, 153–158 (2009)

    MathSciNet  Article  Google Scholar 

  10. Chen, H., Zhou, F.: Isolated singularities for elliptic equations with Hardy operator and source nonlinearity. Discrete Contin. Dyn. Syst. 38, 2945–2964 (2018)

    MathSciNet  Article  Google Scholar 

  11. Chen, H., Quaas, A., Zhou, F.: On nonhomogeneous elliptic equations with the Hardy-Leray potentials. J. Anal. Math. 144(1), 305–334 (2021)

    MathSciNet  Article  Google Scholar 

  12. Chen, H., Véron, L.: Weak solutions of semilinear elliptic equations with Leray–Hardy potential and measure data. Math. Eng. 1, 391–418 (2019)

    MathSciNet  Article  Google Scholar 

  13. Chen, H., Véron, L.: Schrödinger operators with Leray-Hardy potential singular on the boundary. J. Diff. Equat. 269(3), 2091–2131 (2020)

    Article  Google Scholar 

  14. Cîrstea, F.: A Complete Classification of the Isolated Singularities for Nonlinear Elliptic Equations with Inverse Square Potentials, vol. 227. American Mathematical Society, Providence (2014)

    MATH  Google Scholar 

  15. Davies, E.: A review of Hardy inequalities. Oper. Theory Adv. Appl. 110, 55–67 (1999)

    MathSciNet  MATH  Google Scholar 

  16. Deng, Y., Guo, Y., Liu, J.: Existence of solutions for quasilinear elliptic equations with Hardy potential. J. Math. Phys. 57(3), 15 (2016)

    MathSciNet  Article  Google Scholar 

  17. Dupaigne, L.: A nonlinear elliptic PDE with the inverse square potential. J. D’Anal. Math. 86, 359–398 (2002)

    MathSciNet  Article  Google Scholar 

  18. Di Fazio, G.: \(L^p\) estimates for divergence form elliptic equations with discontinuous coefficients. Boll. Un. Mat. Ital. A 10(2), 409–420 (1996)

    MathSciNet  MATH  Google Scholar 

  19. Filippas, S.: Optimizing Improved Hardy Inequalities. J. Funct. Anal. 192, 186–233 (2002)

    MathSciNet  Article  Google Scholar 

  20. Felli, V., Ferrero, A.: On semilinear elliptic equations with borderline Hardy potentials. J. D’Anal. Math. 123, 303–340 (2014)

    MathSciNet  Article  Google Scholar 

  21. Fall, M., Mahmoudi, F.: Weighted Hardy inequality with higher dimensional singularity on the boundary. Calc. Var. PDE 50(3–4), 779–798 (2014)

    MathSciNet  Article  Google Scholar 

  22. Fall, M.: Nonexistence of distributional supersolutions of a semilinear elliptic equation with Hardy potential. J. Funct. Anal. 264, 661–690 (2013)

    MathSciNet  Article  Google Scholar 

  23. Gkikas, K.: Existence and nonexistence of energy solutions for linear elliptic equations involving Hardy-type potentials. Indiana Univ. Math. J. 58, 2317–2346 (2009)

    MathSciNet  Article  Google Scholar 

  24. Guerch, B., Véron, L.: Local properties of stationary solutions of some nonlinear singular Schrödinger equations. Rev. Mat. Iberoam. 7, 65–114 (1991)

    Article  Google Scholar 

  25. Littman, W., Stampachia, G., Weinberger, H.: Regular points for elliptic equations with discontinuous coefficient. Ann. Scuola Norm. Sup. Pisa 17, 43–77 (1963)

    MathSciNet  Google Scholar 

  26. Nguyen, T.: Semilinear elliptic equations with Hardy potential and subcritical source term. Calc. Var. PDE 56(2), 28 (2017)

    MathSciNet  Article  Google Scholar 

  27. Stampachia, G.: Le problème de Dirichlet pour les équations elliptques du second Mathematical series, 30. Princeton University Press, Princeton (1970)

    Google Scholar 

  28. Ponce, A.: Elliptic PDEs, measures and capacities. Eur. Math. Soc. 6, 1–15 (2016)

    Google Scholar 

  29. Opic, B., Kufner, A.: Hardy Type Inequalities. Pitman Research Notes in Mathematics, vol. 219 (1990)

  30. Wang, Y.: Existence and nonexistence of solutions to elliptic equations involving the Hardy potential. J. Math. Anal. Appl. 456(1), 274–292 (2017)

    MathSciNet  Article  Google Scholar 

  31. Willem, M.: Functional Analysis: Fundamentals and Applications. Springer, New York (2013)

    Book  Google Scholar 

Download references


H. Chen is supported by the Natural Science Foundation of China, No. 12071189, by Jiangxi Province Science Fund for Distinguished Young Scholars, No. 20212ACB211005, and by the Jiangxi Provincial Natural Science Foundation, No. 20202ACBL201001, by the Science and Technology Research Project of Jiangxi Provincial Department of Education, No. GJJ200307, GJJ200325.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Hichem Hajaiej.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Hajaiej, H. Global \(W^{1,p}\) regularity for elliptic problem with measure source and Leray–Hardy potential. Ricerche mat (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


  • Leray–Hardy potential
  • Duality approach
  • Radon measure

Mathematics Subject Classification

  • 35J75
  • 35B99
  • 35D99