Skip to main content
Log in

Effects of radiation and chemical reaction on Cu–Al\(_{2}\)O\(_{3}\)/water hybrid flow past a melting surface in the existence of cross magnetic field

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

Leverages of magnetic cross-field, thermal radiation, second order chemical reaction on the unsteady three dimensional flow of electrically conducting Cu–Al\(_{2}\)O\(_{3}\)/water hybrid nanofluid flow past a bidirectionally stretchable melting surface are investigated in the present scrutiny. A comparative inspection of Cu–Al\(_{2}\)O\(_{3}\)/water hybrid nanofluid and Al\(_{2}\)O\(_{3}\)/water nanofluid is achieved. The compatible models for the thermo-physical properties are chosen. The highly coupled nonlinear boundary layer partial differential equations and the associated initial-boundary restrictions are converted into a dimensionless structure employing the appropriate non dimensional variables. These dimension free equations are then fixed by preferring the explicit finite difference scheme. Since the current numerical procedure is conditionally stable, the convergence and stability criteria are established to justify the certainty of the outcomes. The superiority of the sundry parameters on the concentration, temperature and velocity profile in the boundary layer region are evaluated numerically and displayed through the diagrams. The responses of engineering coefficients (Nusselt number Nu, skin friction coefficients \(Cf_X,Cf_Y\) and the Sherwood number Sh) in consequence of distinct parameters are exhibited through the tables. It is detected that the heat transfer and the mass transfer rate of Cu–Al\(_{2}\)O\(_{3}\)/water hybrid flow seem to be higher than that of Al\(_{2}\)O\(_{3}\)/water nanofluid flow. Due to the high thermal properties, hybrid nanofluids are chosen in many fields such as space, ships and defence, biomedical, nuclear system cooling and automotive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

\(c_p\) :

Specific heat at constant pressure \((\hbox {J}\,\hbox {kg}^{-1} \,\hbox {K}^{-1})\)

\(D_A\) :

Diffusivity \((\hbox {m}^2\,\hbox {s}^{-1})\)

\(j_w\) :

Wall mass flux \((\hbox {m}^2\,\hbox {s}^1)\)

\(k^*\) :

Mean absorption coefficient \((\hbox {cm}^{-1})\)

\(k_c\) :

Reaction rate \((\hbox {L}^2\,\hbox {mol}^{-2}\,\hbox {s}^{-1})\)

M:

Hartmann number

m:

Hall current

Pr :

Prandtl number

\(q_w\) :

Wall heat flux \((\hbox {W}/\hbox {m}^2)\)

R :

Non-dimensional rotation parameter

Ra :

Non-dimensional rotation parameter

Sc :

Schmidt number

Sh :

Sherwood number

t :

Dimensional time (s)

uvw :

Velocity components \((\hbox {ms}^{-1})\)

UVW :

Dimensionless velocity components

\(K_c\) :

Dimensionless reaction parameter

\(\epsilon \) :

Velocity ratio parameter

\(\phi _1\) :

Cu volume fraction

\(\phi _2\) :

Al\(_{2}\)O\(_{3}\) volume fraction

\(\omega \) :

Dimensionless frequency of oscillation

\(\bar{\omega }\) :

frequency of ocsillation \((\hbox {s}^{-1})\)

\(\rho \) :

Density \((\hbox {kg}/\hbox {m}^3)\)

\(\tau \) :

Dimensionless time

\(\tau _{wx},\tau _{wy}\) :

wall shear stresses \((\hbox {Nm}^{-2})\)

\(\theta \) :

Dimensionless temperature

\(\sigma \) :

Electrical conductivity \((\hbox {s}/\hbox {m})\)

\(\sigma ^*\) :

Stefan–Boltzmann constant \((\hbox {W}/\hbox {m}^2\,\hbox {K}^4)\)

\(\phi \) :

Dimensionless concentration

nf :

Nanofluid

f :

Base fluid

hnf :

Hybrid nanofluid

p1:

Cu nanoparticles

p2:

Al\(_{2}\)O\(_{3}\) nanoparticles

w :

Properties at wall

\(\infty \) :

Free stream prperties

References

  1. Nadeem, S., Hayat, T., Khan, A.U.: Numerical study on 3D rotating hybrid SWCNT-MWCNT flow over a convectively heated stretching surface with heat generation/absorption. Physica Scr. 94, 075202 (2019)

    Article  ADS  CAS  Google Scholar 

  2. Yusuf, T.A., Mabood, F., Khan, W.A., Gbadeyan, J.A.: Irreversibility analysis of Cu–TiO\(_{2}\)–H\(_{2}\)O hybrid-nanofluid impinging on a 3-D stretching sheet in a porous medium with nonlinear radiation: Darcy–Forchhiemer’s model. Alex. Eng. J. 59, 5247–5261 (2020)

    Article  Google Scholar 

  3. Mabood, F., Yusuf, T.A., Rashad, A.M., Khan, W.A., Nabwey, H.A.: Effects of combined heat and mass transfer on entropy generation due to MHD nanofluid flow over a rotating frame. Comput. Mater. Cont. 66(1), 575–587 (2021)

    Google Scholar 

  4. Aziz, A., Jamshed, W., Ali, Y., Shams, M.: Heat transfer and entropy analysis of Maxwell hybrid nanofluid including effects of inclined magnetic field, joule heating and thermal radiation. Discrete Cont. Dyn. Syst. Ser. S 13(10), 2667–2690 (2020)

    MathSciNet  Google Scholar 

  5. Chereches, E.I., Minea, A.A.: Electrical conductivity of new nanoparticle enhanced fluids: an experimental study. Nanomaterials 9(1228), 1–15 (2019)

    Google Scholar 

  6. Siddiqa, S., Hossain, M.A., Gorla, R.S.R.: Hall current effects on magnetohydrodynamic natural convection flow with strong cross magnetic field. Int. J. Therm. Sci. 71, 196–204 (2013)

    Article  Google Scholar 

  7. Singh, A.K., Gorla, R.S.R.: Free convection heat and mass transfer with Hall current, Joule heating and thermal diffusion. Heat Mass Transf. 45(11), 1341–1349 (2009)

    Article  ADS  Google Scholar 

  8. Kumar, R., Sood, S., Sheikholeslami, M., Shehzad, S.A.: Nonlinear thermal radiation and cubic autocatalysis chemical reaction effects on the flow of stretched nanofluid under rotational oscillations. J. Colloid Interface Sci. 505, 253–265 (2017)

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Kumar, R., Kumar, R., Sheikholeslami, M., Chamkha, A.J.: Irreversibility analysis of the tree dimensional flow of carbon nanotubes due to nonlinear thermal radiation and quartic chemical reactions. J. Mol. Liquids 274, 379–392 (2019)

    Article  CAS  Google Scholar 

  10. Suganya, S., Muthtamilselvan, M., Al-Amri, F., Abdalla, B., Doh, D.H.: Filtration of radiating and reacting SWCNT–MWCNT/water hybrid flow with the significance of Darcy–Forchheimer porous medium. Arab. J. Sci. Eng. 46, 1981–1995 (2021)

    Article  CAS  Google Scholar 

  11. Suganya, S., Muthtamilselvan, M., Al-Amri, F., Abdalla, B.: An exact solution for unsteady free convection flow of chemically reacting Al\(_{2}\)O\(_{3}\)–SiO\(_{2}\)/hybrid nanofluid. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 1–15 (2020)

  12. Mabood, F., Yusuf, T.A., Bognár, G.: Features of entropy optimization on MHD couple stress nanofluid slip flow with melting heat transfer and nonlinear thermal radiation. Sci. Rep. 10(1), 1–13 (2020)

    Article  Google Scholar 

  13. Mabood, F., Yusuf, T.A., Khan, W.A.: Cu-Al\(_{2}\)O\(_{3}\)–H\(_{2}\)O hybrid nanofluid flow with melting heat transfer, irreversibility analysis and nonlinear thermal radiation. J. Therm. Anal. Calorim. 143(2), 973–984 (2021)

    Article  CAS  Google Scholar 

  14. Cheng, W.T., Lin, C.: Transient mixed convective heat transfer with melting effect from the vertical plate in a liquid saturated porous medium. Int. J. Eng. Sci. 44(15–16), 1023–1036 (2006)

    Article  ADS  CAS  Google Scholar 

  15. Kairi, R.R., Murthy, P.V.: Effect of melting on mixed convection heat and mass transfer in a non-Newtonian fluid saturated non-Darcy porous medium. ASME J. Heat Transf. 134(4), 1–8 (2012)

    Article  Google Scholar 

  16. Kazmierczak, M., Poulikakos, D., Pop, I.: Melting from a flat plate embedded in a porous medium in the presence of steady natural convection. Numer. Heat Transf. 10(6), 571–581 (1986)

    Article  ADS  Google Scholar 

  17. Epstein, M., Cho, D.H.: Melting heat transfer in steady laminar flow over a flat plate. ASME J. Heat Transf. 98(3), 531–533 (1976)

    Article  Google Scholar 

  18. Mahanthesh, B., Gireesha, B.J., Raju, C.S.: Cattaneo–Christov heat flux on UCM nanofluid flow across a melting surface with double stratification and exponential space dependent internal heat source. Inf. Med. Unlocked 9(May), 26–34 (2017)

    Article  Google Scholar 

  19. Anantha Kumar, K., Ramana Reddy, J.V., Sugunamma, V., Sandeep, N.: Impact of cross diffusion on MHD viscoelastic fluid flow past a melting surface with exponential heat source. Multidiscip. Model. Mater. Struct. 14(5), 999–1016 (2018)

    Article  Google Scholar 

  20. Das, K.: Radiation and melting effects on MHD boundary layer flow over a moving surface. Ain Shams Eng. J. 5(4), 1207–1214 (2014)

    Article  Google Scholar 

  21. Radhika, M, Punith Gowda, R.J., Naveenkumar, R., Siddabasappa, Prasannakumara, B.C.: Heat transfer in dusty fluid with suspended hybrid nanoparticles over a melting surface. Heat Transf. 1–18 (2020)

  22. Adegbie, K.S., Omowaye, A.J., Disu, A.B., Animasaun, I.L.: Heat and mass transfer of upper convected Maxwell fluid flow with variable thermo-physical properties over a horizontal melting surface. Appl. Math. 06(08), 1362–1379 (2015)

    Article  Google Scholar 

  23. Alam, M.S., Rahman, M.M., Sattar, M.A.: Transient magnetohydrodynamic free convective heat and mass transfer flow with thermophoresis past a radiate inclined permeable plate in the presence of variable chemical reaction and temperature dependent viscosity. Nonlinear Anal. Model. Control 14(1), 3–20 (2009)

    Article  CAS  Google Scholar 

  24. Rashad, A.M., Chamkha, A.J., Ismael, M.A., Salah, T.: Magnetohydrodynamics natural convection in a triangular cavity filled with a Cu–Al\(_{2}\)O\(_{2}\)/water hybrid nanofluid with localized heating from below and internal heat generation. J. Heat Trans. 140, 7 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Muthtamilselvan.

Ethics declarations

Conflict of interest:

On behalf of all authors, M. Muthtamilselvan as the corresponding author states that there is no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suganya, S., Muthtamilselvan, M. & Abdalla, B. Effects of radiation and chemical reaction on Cu–Al\(_{2}\)O\(_{3}\)/water hybrid flow past a melting surface in the existence of cross magnetic field. Ricerche mat 73, 351–379 (2024). https://doi.org/10.1007/s11587-021-00606-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-021-00606-z

Keywords

Mathematics Subject Classification

Navigation