Skip to main content

Advertisement

Log in

Mann-type algorithms for solving the monotone inclusion problem and the fixed point problem in reflexive Banach spaces

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

In this paper, we introduce two algorithms for finding a common solution of the monotone inclusion problem and the fixed point problem for a relatively nonexpansive mapping in reflexive Banach spaces. The weak convergence results for both algorithms are established without the prior knowledge of the Lipschitz constant of the mapping. An application to the variational inequality problem is considered. Finally, some numerical experiments of the proposed algorithms including comparisons with other algorithms are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Agarwal, R.P., O’Regan, D., Sahu, D.R.: Fixed Point Theory for Lipschitzian type Mappings with Applications. Springer, Berlin (2009)

    MATH  Google Scholar 

  2. Alber, Y.I.: Generalized Projection Operators in Banach Spaces: Properties and Applications, Proceedings of the Israel Seminar, Vol. 1 of Functional Differential Equation, 1–21, Ariel (1993)

  3. Alber, Y.I.: Metric and generalized projection operators in Banach spaces: properties and applications. In: Kartsatos, A.G. (ed.) Theory and Applications of Nonlinear Operator of Accretive and Monotone Type, pp. 15–50. Marcel Dekker, New York (1996)

    Google Scholar 

  4. Barbu, V.: Nonlinear Differential Equations of Monotone Types Nonlinear Differential in Banach Spaces. Springer, New York (2010)

    MATH  Google Scholar 

  5. Barbu, V., Precupanu, T.: Convexity and Optimization in Banach Spaces. Springer, New York (2010)

    MATH  Google Scholar 

  6. Bauschke, H.H., Borwein, J.M., Combettes, P.L.: Essential smoothness, essential strict convexity, and Legendre functions in Banach spaces. Commun. Contemp. Math. 3, 615–647 (2001)

    MathSciNet  MATH  Google Scholar 

  7. Bauschke, H.H., Wang, X., Yao, L.: General resolvents for monotone operators: characterization and extension, In Biomedical Mathematics: Promising Directions in Imagine, Therapy Planning and Inverse Problem (Huangguoshu 2008), Y. Cencor, M. Jiang and G. Wang (eds.), Medical Physics Plublishing, Madison, WI, USA, 57–74 (2010)

  8. Beck, A.: First-Order Methods in Optimization. Society for Industrial and Applied Mathematics, Philadelphia (2017)

    MATH  Google Scholar 

  9. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York (2000)

    MATH  Google Scholar 

  10. Borwein, J., Reich, S., Shafrir, I.: Krasnoselskii-Mann iterations in normed spaces. Canad. Math. Bull. 35, 21–28 (1992)

    MathSciNet  MATH  Google Scholar 

  11. Bregman, L.M.: The relaxation method for finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. Math. Phys. 7, 200–217 (1967)

    MathSciNet  Google Scholar 

  12. Brice\(\tilde{\text{n}}\)o-Arias, L.M., Combettes, P.L.: Monotone Operator Methods for Nash Equilibria in Non-potential Games, In: Bailey D. et al. (eds) Computational and Analytical Mathematics. Springer Proceedings in Mathematics & Statistics, vol 50. Springer, New York (2013)

  13. Butnariu, D., Resmerita, E.: Bregman distances, totally convex functions and a method for solving operator equations in Banach spaces, Abstr. Appl. Anal. 2006 pp. 1–39, Art. ID 84919 (2006)

  14. Butnariu, D., Reich, S., Zaslavski, A.J.: There are many totally convex functions. J. Convex Anal. 13, 623–632 (2006)

    MathSciNet  MATH  Google Scholar 

  15. Butnariu, D., Reich, S., Zaslavski, A.J.: Asymptotic behavior of relatively nonexpansive mappings in Banach spaces. J. Appl. Anal. 7, 151–174 (2001)

    MathSciNet  MATH  Google Scholar 

  16. Cholamjiak, P., Sunthrayuth, P.: A Halpern-type iteration for solving the split feasibility problem and the fixed point problem of Bregman relatively nonexpansive semigroup in Banach spaces. Filomat. 32, 3211–3227 (2018)

    MathSciNet  MATH  Google Scholar 

  17. Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 4, 1168–1200 (2005)

    MathSciNet  MATH  Google Scholar 

  18. Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57, 1413–1457 (2004)

    MathSciNet  MATH  Google Scholar 

  19. Denisov, S.V., Semenov, V.V., Stetsynk, P.I.: Bregman extragradient method with monotone rule of step adjustment. Cybern. Syst. Anal. 55(3), 377–383 (2019)

    MATH  Google Scholar 

  20. Duchi, J., Singer, Y.: Efficient online and batch learning using forward-backward splitting. J. Mach. Learn. Res. 10, 2899–2934 (2009)

    MathSciNet  MATH  Google Scholar 

  21. Gibali, A., Thong, D.V.: Tseng type methods for solving inclusion problems and its applications, Calcolo. 55, Article Number 49 (2018)

  22. Gibali, A., Thong, D.V., Vinh, N.T.: Three new iterative methods for solving inclusion problems and related problems, Comput. Appl. Math. 39, Article Number 187 (2020)

  23. Harker, P.T., Pang, J.S.: A damped-Newton method for the linear complementarity problem. In: Allgower, G., Georg, K. (eds.) Computational Solution of Nonlinear Systems of Equations. Lectures in Applied Mathematics. 26, pp. 265–284. AMS, Providence (1990)

  24. Iiduka, H., Takahashi, W.: Weak convergence of a projection algorithm for variational inequalities in a Banach space. J. Math. Anal. Appl. 339, 668–679 (2008)

    MathSciNet  MATH  Google Scholar 

  25. Iyer, R., Bilmes, J.: Submodular-Bregman divergences and Lovász-Bregman divergences with Applications, Proceedings of the 25-th International Conference on Neural Information Processing Systems, vol. 2, pp. 2933–2941 (2012)

  26. Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16, 964–979 (1979)

    MathSciNet  MATH  Google Scholar 

  27. López, G., Martín-Márquez, V., Wang, F., Xu, H.–K.: Forward-backward splitting methods for accretive operators in Banach spaces, Abstr. Appl. Anal. 2012, Art. ID 109236 (2012)

  28. Manaka, H., Takahashi, W.: Weak convergence theorems for maximal monotone operators with nonspreading mappings in a Hilbert space. Cubo. 13, 11–24 (2011)

    MathSciNet  MATH  Google Scholar 

  29. Mann, W.R.: Mean value methods in iterations. Proc. Am. Math. Soc. 4, 506–510 (1953)

    MathSciNet  MATH  Google Scholar 

  30. Martín-Márquez, V., Reich, S., Sabach, S.: Iterative methods for approximating fixed points of Bregman nonexpansive operators. Discrete Continuous Dyn. Syst. Ser. S. 6, 1043–1063 (2013)

    MathSciNet  MATH  Google Scholar 

  31. Nakajo, K.: Strong convergence for gradient projection method and relatively nonexpansive mappings in Banach spaces. Appl. Math. Comput. 271, 251–258 (2015)

    MathSciNet  MATH  Google Scholar 

  32. Naraghirad, E., Yao, J.C.: Bregman weak relatively non expansive mappings in Banach space. Fixed Point Theory Appl. 2013, 141 (2013)

    MATH  Google Scholar 

  33. Nielsen, F., Boltz, S.: The Burbea-Rao and Bhattacharyya centroids. IEEE Trans. Inf. Theory. 57, 5455–5466 (2011)

    MathSciNet  MATH  Google Scholar 

  34. Nielsen, F., Nock, R.: Generalizing skew Jensen divergences and Bregman divergences with comparative convexity. IEEE Signal Process. Lett. 24, 1123–1127 (2017)

    MATH  Google Scholar 

  35. Pathak, H.K.: An Introduction to Nonlinear Analysis and Fixed Point Theory, Springer Nature Singapore Pte Ltd. (2018)

  36. Phelps, R.P.: Convex functions, monotone operators, and differentiability, 2nd edn. In: Lecture Notes in Mathematics, vol. 1364, Springer Verlag, Berlin (1993)

  37. Qin, X., Cho, S.Y., Wang, L.: Strong convergence of an iterative algorithm involving nonlinear mappings of nonexpansive and accretive type. Optimization. 67, 1377–1388 (2018)

    MathSciNet  MATH  Google Scholar 

  38. Raguet, H., Fadili, J., Peyre, G.: A generalized forward-backward splitting. SIAM J. Imaging Sci. 6, 1199–1226 (2013)

    MathSciNet  MATH  Google Scholar 

  39. Reem, D., Reich, S.: Solutions to inexact resolvent inclusion problems with applications to nonlinear analysis and optimization. Rend. Circ. Mat. Palermo. 67, 337–371 (2018)

    MathSciNet  MATH  Google Scholar 

  40. Reem, D., Reich, S., De Pierro, A.: Re-examination of Bregman functions and new properties of their divergences. Optimization. 68, 279–348 (2019)

    MathSciNet  MATH  Google Scholar 

  41. Reich, S.: Weak convergence theorems for nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 67, 274–276 (1979)

    MathSciNet  MATH  Google Scholar 

  42. Reich, S.: The range of sums of accretive and monotone operators. J. Math. Anal. Appl. 68, 310–317 (1979)

    MathSciNet  MATH  Google Scholar 

  43. Reich, S.: A weak convergence theorem for the alternating method with Bregman distances, in: Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, Marcel Dekker, New York, pp. 313–318 (1996)

  44. Reich, S., Sabach, S.: Existence and approximation of fixed points of Bregman firmly nonexpansive mappings in reflexive Banach spaces. In: Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pp. 299–314. Springer, New York (2011)

  45. Reich, S., Sabach, S.: Two strong convergence theorems for a proximal method in reflexive Banach spaces. Numer. Funct. Anal. Optim. 31, 22–44 (2010)

    MathSciNet  MATH  Google Scholar 

  46. Reich, S., Sabach, S.: Two strong convergence theorems for Bregman strongly nonexpansive operators in reflexive Banach spaces. Nonlinear Anal. TMA 73, 122–135 (2010)

    MathSciNet  MATH  Google Scholar 

  47. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton, NJ (1970)

    MATH  Google Scholar 

  48. Rockafellar, R.T.: On the maximal monotonicity of subdifferential mappings. Pacific J. Math. 33, 209–216 (1970)

    MathSciNet  MATH  Google Scholar 

  49. Rockafellar, R.T., Wets, R.J.–B.: Variational Analysis, vol. 317 of Gundlehren der mathematischen Wissenchaften, Springer–Verlag, Berlin, 3rd printing, 2009 edition

  50. Shehu, Y.: Convergence results of forward-backward algorithms for sum of monotone operators in Banach spaces, Results Math. 74, Article Number 138 (2019)

  51. Suantai, S., Cholamjiak, P., Sunthrayuth, P.: Iterative methods with perturbations for the sum of two accretive operators in \(q\)-uniformly smooth Banach spaces. RACSAM. 113, 203–223 (2019)

    MathSciNet  MATH  Google Scholar 

  52. Sunthrayuth, P., Cholamjiak, P.: A modified extragradient method for variational inclusion and fixed point problems in Banach spaces. Appl. Anal. (2019). https://doi.org/10.1080/00036811.2019.1673374

    Article  MATH  Google Scholar 

  53. Takahashi, S., Takahashi, W., Toyoda, M.: Strong convergence theorems for maximal monotone operators with nonlinear mappings in Hilbert spaces. J. Optim. Theory Appl. 147, 27–41 (2010)

    MathSciNet  MATH  Google Scholar 

  54. Thong, D.V., Cholamjiak, P.: Strong convergence of a forward-backward splitting method with a new step size for solving monotone inclusions, Comput. Appl. Math. 38, Article Number 94 (2019)

  55. Thong, D.V., Vinh, N.T.: Inertial methods for fixed point problems and zero point problems of the sum of two monotone mappings. Optimization. 68, 1037–1072 (2019)

    MathSciNet  MATH  Google Scholar 

  56. Tibshirani, R.: Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. 58, 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  57. Tseng, P.: A modified forward-backward splitting method for maximal monotone mappings. SIAM J. Control Optim. 38, 431–446 (2000)

    MathSciNet  MATH  Google Scholar 

  58. Tuyen, T.M., Promkam, R., Sunthrayuth, P.: Strong convergence of a generalized forward-backward splitting method in reflexive Banach spaces, Optimization. https://doi.org/10.1080/02331934.2020.1812607 (2020)

  59. Zǎlinescu, C.: Convex Analysis in General Vector Spaces. World Scientific. Publishing Co., Inc, River Edge, NJ (2002)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to thank editor and reviewers for value comments for improving the original manuscript. P. Sunthrayuth would like to thank Rajamangala University of Technology Thanyaburi (RMUTT). This work was supported by Thailand Science Research and Innovation under the project IRN62W0007, the revenue budget in 2021, School of Science, University of Phayao and Thailand Research Fund under project RSA6180084.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasit Cholamjiak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sunthrayuth, P., Pholasa, N. & Cholamjiak, P. Mann-type algorithms for solving the monotone inclusion problem and the fixed point problem in reflexive Banach spaces. Ricerche mat 72, 63–90 (2023). https://doi.org/10.1007/s11587-021-00596-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-021-00596-y

Keywords

Mathematics Subject Classification

Navigation