Skip to main content
Log in

Rothe time-discretization method for a nonlinear parabolic p(u) -Laplacian problem with Fourier-type boundary condition and \(L^1\)-data

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

In this paper, we prove the existence and uniqueness results of entropy solutions to a class of nonlinear parabolic p(u)-Laplacian problem with Fourier-type boundary conditions and \(L^1\)-data. The main tool used here is the Rothe method combined with the theory of variable exponent Sobolev spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abassi, A., El Hachimi, A., Jamea, A.: Entropy solutions to nonlinear Neumann problems with \(L^1\)-data. Int. J. Math. Stat. 2(S08), 4–17 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Andreianov, B., Bendahmane, M., Ouaro, S.: Structural stability for variable exponent elliptic problems. I. the \(p(x)\)-Laplacian kind problems. Nonlinear Anal. 73, 2–24 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Andreianov, B., Bendahmane, M., Ouaro, S.: Structural stability for variable exponent elliptic problems, II: the p(u)-Laplacian and coupled problems. Nonlinear Anal. 72, 4649–4660 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Andreu, F., Igbida, N., Mazn, J.M., Toledo, J.: \(L^1\) existence and uniqueness results for quasi-linear elliptic equations with nonlinear boundary conditions. Ann. Inst. Henri Poincar 24, 61–89 (2007)

    Article  MATH  Google Scholar 

  5. Andreu, F., Mazóon, J.M., Segura de Léon, S., Toledo, J.: Quasi-linear elliptic and parabolic equations in L1 with nonlinear boundary conditions. Adv. Math. Sci. Appl. 7(1), 183–213 (1997)

    MathSciNet  Google Scholar 

  6. Antontsev, S.N., Rodrigues, J.F.: On stationary thermo-rheological viscous flows. Ann. Univ. Ferrara Sez. VII Sci. Math. 52(1), 19–36 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Azroul, E., Redwane, H., Rhoudaf, M.: Existence of a renormalized solution for a class of nonlinear parabolic equations in Orlicz spaces. Port. Math. 66(1), 29–63 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Benboubker, M.B., Ouaro, S., Traor, U.: Entropy solutions for nonhomogeneous Neumann problems involving the generalized \(p(x)\)-laplacian operators and measure data. Nonlinear Evol. Equ. Appl. 5, 53–76 (2014)

    MATH  Google Scholar 

  9. Bénilan, Ph, Boccardo, L., Gallouet, T., Gariepy, R., Pierre, M., Vazquez, J.L.: An \(L^1\) theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Sc. Norm. Super. Pisa Cl. Sci 22, 241–273 (1995)

    MATH  Google Scholar 

  10. Blomgren, P., Chan, T., Mulet, P., Wong, C.: Total variation image restoration: numerical methods and extensions. In: Proceedings of the IEEE international conference on image processing, vol. 3, 384–387. IEEE Computer Society Press, Piscataway (1997)

  11. Chipot, M., de Oliveira, H.B.: Some results on the p(u)-Laplacian problem. Math. Ann. 375, 283–306 (2019). Correction to: Math. Ann. 375(2019), 307–313 (2019). 10.1007/s00208-019-01859-8

    Article  MathSciNet  MATH  Google Scholar 

  12. Eden, A., Michaux, B., Rakotoson, J.M.: Semi-discretized nonlinear evolution equations as dynamical systems and error analysis. Indiana Univ. Math. J. 39(3), 737–783 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  13. El Hachimi, A., Jamea, A.: Nonlinear parabolic problems with Neumann-type boundary conditions and \(L^1\)-data. Electron. J. Qual. Theory Differ. Equ. 27, 1–22 (2007)

    Article  MATH  Google Scholar 

  14. Fan, X., Zhao, D.: On the spaces \(L^{p(x)}(\Omega )\) and \(W^{m, p(x)}(\Omega )\). J. Math. Anal. Appl. 263, 424–446 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jamea, A.: Weak solutions to nonlinear parabolic problems with variable exponent. Int. J. Math. Anal. 10, 553–564 (2016)

    Article  Google Scholar 

  16. Jamea, A., Alaoui, A., El Hachimi, A.: Existence of entropy solutions to nonlinear parabolic problems with variable exponent and \(L^1\)-data. Ric. Math. 67(2), 785–801 (2018)

    Article  MATH  Google Scholar 

  17. Ouaro, S., Noufou, S.: Nonlinear elliptic \(p(u)\)-Laplacian problem with Fourier boundary condition. Cubo Temuco 22(1), 85–124 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ouaro, S., Tchousso, A.: Well-posedness result for a nonlinear elliptic problem involving variable exponent and Robin type boundary condition. Afr. Diaspora J. Math. 11(2), 36–64 (2011)

    MathSciNet  MATH  Google Scholar 

  19. Růžička, M.: Electrorheological fluids, modeling and mathematical theory. Lectures notes in math, vol. 1748. Springer, Berlin (2000)

  20. Sabri, A., Jamea, A., Talibi, H.A.: Existence of entropy solutions to nonlinear degenerate parabolic problems with variable exponent and L1-data. Commun. Math. 28, 67–88 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sanchón, M., Urbano, J.M.: Entropy solutions for the p(x)-Laplace equation. Trans. Am. Math. Soc. 361, 6387–6405 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Türola, J.: Image denoising using directional adaptive variable exponents model. J. Math. Imag. Vis. 57, 56–74 (2017)

    Article  MathSciNet  Google Scholar 

  23. Wang, L., Fan, Y., Ge, W.: Existence and multiplicity of solutions for a Neumann problem involving the \(p(x)\)-Laplace operator. Nonlinear Anal. 71, 4259–4270 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Yao, J.: Solutions for Neumann boundary value problems involving \(p(x)\)-Laplace operator. Nonlinear Anal. (TMA) 68, 1271–1283 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere gratitude to the anonymous referees and the handling editor for their careful reading and for relevant remarks/suggestions, which helped them to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelali Sabri.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabri, A., Jamea, A. Rothe time-discretization method for a nonlinear parabolic p(u) -Laplacian problem with Fourier-type boundary condition and \(L^1\)-data. Ricerche mat 71, 609–632 (2022). https://doi.org/10.1007/s11587-020-00544-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-020-00544-2

Keywords

Mathematics Subject Classification

Navigation