Skip to main content
Log in

Converging strong shock waves in magnetogasdynamics under isothermal condition

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

The similarity solutions to the problem of cylindrically symmetric strong shock waves in an ideal gas with a constant azimuthal magnetic field are presented. The flow behind the shock wave is assumed to spatially isothermal rather than adiabatic. We use the method of Lie group invariance to determine the possible class of self-similar solutions. Infinitesimal generators of Lie group transformations are determined by using the invariance surface conditions to the system and on the basis of arbitrary constants occurring in the expressions for the generators, four different possible cases of the solutions are reckoned and we observed that only two out of all possibilities hold self-similar solutions, one of which follows the power law and another follows the exponential law. To obtain the similarity exponents numerical calculations have been performed and comparison is made with the existing results in the literature. The flow patterns behind the shock are analyzed graphically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sedov, L.I.: Similarity and Dimensional Methods in Mechanics. Academic Press, New York (1959)

    MATH  Google Scholar 

  2. Taylor, G.I.: The formation of a blast wave by a very intense explosion. I. Theoretical discussion. Proc. R. Soc. Lond. A 201, 159–174 (1950)

    Article  MATH  Google Scholar 

  3. Levin, V.A., Zhuravskaya, T.A.: Propagation of converging and diverging shock waves under isothermal condition. Shock Waves 6, 177–182 (1996)

    Article  MATH  Google Scholar 

  4. Zhuravskaya, T.A., Levin, V.A.: The propagation of converging and diverging shock waves under the intense heat exchange conditions. J. Appl. Math. Mech. 60, 745–752 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Verma, B.G., Shrivastava, R.C., Khan, A.H.: Strong spherical magnetogasdynamic shock with radiation near the surface of star. Astrophys. Space Sci. 97, 137–143 (1983)

    Article  MATH  Google Scholar 

  6. Guderley, G.: Starke kugelige und zylindrische verdichtungsstosse in der nahe des kugelmittelpunktes bzw der zylinderachse. Zuftfahrtforschung 19, 302–312 (1942)

    MathSciNet  MATH  Google Scholar 

  7. Logan, J.D., Perez, J.D.J.: Similarity solutions for reactive shock hydrodynamics. SIAM J. Appl. Math. 39, 512–527 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  8. Sari, R., Bode, N., Yalinewich, A., MacFadyen, A.: Slightly two- or three-dimensional self-similar solutions. Phys. Fluids 24, 087102 (2012)

    Article  Google Scholar 

  9. Pandey, M., Pandey, B.D., Sharma, V.D.: Symmetry groups and similarity solutins for the system of equations for a viscous compressible fluid. Appl. Math. Comput. 215, 681–685 (2009)

    MathSciNet  MATH  Google Scholar 

  10. Chisnell, R.F.: An analytic description of converging shock waves. J. Fluid Mech. 354, 357–375 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Vandyke, M., Guttmann, A.J.: The converging shock wave from a spherical or cylindrical piston. J. Fluid Mech. 120, 451–462 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  12. Saha, S., Singh, R.: Propagation of non-planar weak and strong shocks in a non-ideal relaxing gas. Ric. Mat. (2019). https://doi.org/10.1007/s11587-019-00472-w

    Article  Google Scholar 

  13. Lazarus, R.B.: Self-similar solutions for converging shocks and collapsing cavities. SIAM J. Numer. Anal. 18, 316–371 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sharma, V.D., Arora, R.: Similarity solutions for strong shocks in an ideal gas. Stud. Appl. Math. 114, 375–394 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ponchaut, N., Hornung, H.G., Pullin, D.I., Mouton, C.A.: On imploding cylindrical and spherical shock waves in a perfect gas. J. Fluid Mech. 560, 103–122 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Arora, R., Tomar, A., Singh, V.P.: Similarity solutions for strong shocks in a non-ideal gas. Math. Model. Anal. 17, 351–365 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Tomar, A., Arora, R., Chauhan, A.: Propagation of strong shock waves in a non-ideal gas. Acta Astronaut. 159, 96–104 (2019)

    Article  Google Scholar 

  18. Chauhan, A., Arora, R., Tomar, A.: Convergence of strong shock waves in a non-ideal magnetogasdynamics. Phys. Fluids 30, 116105 (2018)

    Article  Google Scholar 

  19. Boyd, Z.M., Ramsey, S.D., Baty, R.S.: On the existence of self-similar converging shocks for arbitrary equation of state. Q. J. Mech. Appl. Math. 70, 401–417 (2017)

    Article  MATH  Google Scholar 

  20. Gupta, B., Jena, J.: Kinematics of spherical waves in interstellar gas clouds. Int. J. Nonlinear Mech. 99, 51–58 (2018)

    Article  Google Scholar 

  21. Siddiqui, M.J., Arora, R., Kumar, A.: Shock waves propagation under the influence of magnetic field. Chaos Solitons Fractals 97, 66–74 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hirschler, T., Gretler, W.: Similarity analysis of strong converging spherical shock waves in radiating gas. Acta Mech. 154, 159–177 (2002)

    Article  MATH  Google Scholar 

  23. Ramsey, S.D., Schmidt, E.M., Boyd, Z.M., Lilieholm, J.F., Baty, R.S.: Converging shock flows for a Mie–Grüneisen equation of state. Phys. Fluids 30, 046101 (2018)

    Article  Google Scholar 

  24. Zhao, N., Mentrelli, A., Ruggeri, T., Sugiyama, M.: Admissible shock waves and shock induced phase transitions in a Van der Waals fluid. Phys. Fluids 23, 86–101 (2011)

    Article  MATH  Google Scholar 

  25. Bluman, G.W., Cheviakov, A.F., Anco, S.C.: Applications of Symmetry Methods to Partial Differential Equations, vol. 168. Springer, New York (2010)

    MATH  Google Scholar 

  26. Nath, G.: Unsteady isothermal flow behind a magnetogasdynamic shock wave in a self-gravitating gas with exponentially varying density. J. Theor. Appl. Phys. 8, 1–8 (2014)

    Article  Google Scholar 

  27. Whitham, G.B.: Linear and Nonlinear Waves. Wiley, New York (1974)

    MATH  Google Scholar 

Download references

Acknowledgements

The first author Antim Chauhan has acknowledged the research support from “University Grant Commission (Govt of India)” (Sr. No. 2121541039 with Ref No. 20/12/2015 (ii)EU-V).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajan Arora.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, A., Arora, R. & Tomar, A. Converging strong shock waves in magnetogasdynamics under isothermal condition. Ricerche mat 71, 297–313 (2022). https://doi.org/10.1007/s11587-020-00491-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-020-00491-y

Keywords

Mathematics Subject Classification

Navigation