Nonlinear models and bifurcation trees in quantum mechanics: a review of recent results

  • Andrea SacchettiEmail author


In this talk we discuss some recent results I obtained for a class of nonlinear models in quantum mechanics. In particular we focus our attention to the nonlinear one-dimensional Schrodinger equation with a periodic potential and a Stark-type perturbation. In the limit of large periodic potential the Stark–Wannier ladders of the linear equation become a dense energy spectrum because a cascade of bifurcations of stationary solutions occurs; for a detailed treatment we refer to Sacchetti (Phys Rev E 95:062212, 2017, SIAM J Math Anal 50(6):5783–5810, 2018) where this model has been studied.


Gross–Pitaevskii equation Bose–Einstein condensates Bifurcation tree 

Mathematics Subject Classification

35Q55 81Qxx 81T25 



  1. 1.
    Adami, R., Sacchetti, A.: The transition from diffusion to blow-up for a nonlinear Schrodinger equation in dimension 1. J. Phys. A Math. Gen. 38, 83798392 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Adami, R., Noja, D.: Stability and symmetry-breaking bifurcation for the ground states of a NLS with a \(\delta \)’ interaction. Commun. Math. Phys. 318, 247–289 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Adhikari, S.K., Malomed, S.P., Salasnich, L., Toigo, F.: Spontaneous symmetry breaking of Bose–Fermi mixtures in double-well potentials. Phys. Rev. A 81, 053630 (2010)CrossRefGoogle Scholar
  4. 4.
    Albiez, M., Gati, R., Fölling, J., Hunsmann, S., Cristiani, M., Oberthaler, M.K.: Direct observation of tunneling and nonlinear self-trapping in a single Bosonic Josephson junction. Phys. Rev. Lett. 95, 010402 (2005)CrossRefGoogle Scholar
  5. 5.
    Alexander, T.J., Yan, D., Kevrekidis, P.G.: Complex mode dynamics of coupled wave oscillators. Phys. Rev. E 88, 062908 (2013)CrossRefGoogle Scholar
  6. 6.
    Bambusi, D., Sacchetti, A.: Exponential times in the one-dimensional Gross–Pitaevskii equation with multiple well potential. Commun. Math. Phys. 275, 136 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bambusi, D., Sacchetti, A.: Stability of spectral eigenspaces in nonlinear Schrodinger equations. Dyn. PDE 4, 129–141 (2007)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Banica, V., Visciglia, N.: Scattering for NLS with a delta potential. J. Differ. Equ. 260, 4410–4439 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Benedikter, N., de Oliveira, G., Schlein, B.: Quantitative derivation of the Gross-Pitaevskii equation. Commun. Pure Appl. Math. 68, 1399–1482 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bloch, I.: Ultracold quantum gases in optical lattices. Nat. Phys. 1, 23 (2005)CrossRefGoogle Scholar
  11. 11.
    Bloch, I.: Quantum coherence and entanglement with ultracold atoms in optical lattices. Nature 435, 1016 (2008)CrossRefGoogle Scholar
  12. 12.
    Bloch, I., Dalibard, J., Zwerger, W.: Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885 (2008)CrossRefGoogle Scholar
  13. 13.
    Cambournac, C., Sylvestre, T., Maillotte, H., Vanderlinden, B., Kockaert, P., Emplit, P., Haelterman, M.: Symmetry-breaking instability of multimode vector solitons. Phys. Rev. Lett. 89, 083901 (2002)CrossRefGoogle Scholar
  14. 14.
    Carles, R.: Semi-Classical Analysis for Nonlinear Schrodinger Equations. Cambridge University Press, Cambridge (2008)CrossRefzbMATHGoogle Scholar
  15. 15.
    Carlone, R., Figari, R., Negulescu, C.: The quantum beating and its numerical simulation. J. Math. Anal. Appl. 450, 1294–1316 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Cazenave, T.: Semilinear Schrodinger Equations. Courant Lecture Notes, AMS (2003)CrossRefzbMATHGoogle Scholar
  17. 17.
    Dalfovo, F., Giorgini, S., Pitaevskii, L.P., Stringari, S.: Theory of Bose–Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463 (1999)CrossRefGoogle Scholar
  18. 18.
    Damanik, D., Ruzhansky, M., Vougalter, V., Wong, M.W., Adami, R., Noja, D.: Exactly solvable models and bifurcations: the case of the cubic NLS with a or a interaction in dimension one. Math. Modell. Nat. Phenom. 9, 1–16 (2014)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Della Casa, F.F.G., Sacchetti, A.: Stationary states for non linear one-dimensional Schrodinger equations with singular potential. Physica D 219, 60–68 (2006)Google Scholar
  20. 20.
    Ferrari, G., Poli, N., Sorrentino, F., Tino, G.M.: Long-lived Bloch oscillations with Bosonic \(Sr\) atoms and application to gravity measurement at the micrometer scale. Phys. Rev. Lett. 97, 060402 (2006)CrossRefGoogle Scholar
  21. 21.
    Fisher, M.P.A., Weichman, P.B., Grinstein, G., Fisher, D.S.: Boson localization and the superfluid-insulator transition. Rev. B 40, 546 (1989)CrossRefGoogle Scholar
  22. 22.
    Fukuizumi, R., Sacchetti, A.: Bifurcation and stability for nonlinear Schrodinger equations with double well potential in the semiclassical limit. J. Stat. Phys. 145, 1546–1594 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Fukuizumi, R., Sacchetti, A.: Stationary states for nonlinear Schrodinger equations with periodic potentials. J. Stat. Phys. 156, 707–738 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Gerbier, F., Widera, A., Fölling, S., Mandel, O., Gericke, T., Bloch, I.: Phase coherence of an atomic Mott insulator. Phys. Rev. Lett. 95, 050404 (2005)CrossRefGoogle Scholar
  25. 25.
    Gerbier, F., Widera, A., Fölling, S., Mandel, O., Gericke, T., Bloch, I.: Interference pattern and visibility of a Mott insulator. Phys. Rev. A 72, 053606 (2005)CrossRefGoogle Scholar
  26. 26.
    Ginibre, J., Velo, G.: On a class of nonlinear Schrodinger equations. J. Fund. Anal. 32, 1–71 (1979)CrossRefzbMATHGoogle Scholar
  27. 27.
    Goodman, R.: Hamiltonian Hopf bifurcations and dynamics of NLS/GP standing-wave modes. J. Phys. A Math. Theor. 44, 425101 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Gross, E.P.: Structure of a quantized vortex in boson systems. Il Nuovo Cimento 20, 454457 (1961)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Hayata, K., Koshiba, M.: Self-localization and spontaneous symmetry breaking of optical fields propagating in strongly nonlinear channel waveguides: limitations of the scalar field approximation. J. Opt. Soc. Am. B 9, 1362 (1992)CrossRefGoogle Scholar
  30. 30.
    Ianni, I., Le Coz, S., Royer, J.: On the Cauchy problem and the black solitons of a singularly perturbed Gross-Pitaevskii equation. SIAM J. Math. Anal. 49, 1060–1099 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Kirr, E., Kevrekidis, P.G., Pelinovsky, D.E.: Symmetry-breaking bifurcation in the nonlinear Schrodinger equation with symmetric potential. Commun. Math. Phys. 308, 795–844 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Pelinovsky, D.E., Schneider, G.: Bounds on the tight-binding approximation for the Gross–Pitaevskii equation with a periodic potential. J. Differ. Equ. 248, 837–849 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Pelinovsky, D.E.: Localization in Periodic Potentials: From Schrodinger Operators to the Gross-Pitaevskii Equation. Combridge UNiversity Press, Combridge (2011)CrossRefzbMATHGoogle Scholar
  34. 34.
    Pelinovsky, D.E., Phan, T.V.: Normal form for the symmetry-breaking bifurcation in the nonlinear Schrodinger equation. J. Differ. Equ. 253, 2796–2824 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Pitaevskii, L.P.: Vortex lines in an imperfect Bose gas. Sov. Phys. JETP 13, 451454 (1961)MathSciNetGoogle Scholar
  36. 36.
    Poli, N., Wang, F.Y., Tarallo, M.G., Alberti, A., Prevedelli, M., Tino, G.M.: Precision measurement of gravity with cold atoms in an optical lattice and comparison with a classical gravimeter. Phys. Rev. Lett. 106, 038501 (2011)CrossRefGoogle Scholar
  37. 37.
    Presilla, C., Jona-Lasinio, G., Toninelli, C.: Classical versus quantum structures: the case of pyramidal molecules. In: Blanchard, P., DellAntonio, G. (eds.) Multiscale Methods in Quantum Mechanics: Theory and Experiment, p. 11927. Birkhäuser, Boston (2004)Google Scholar
  38. 38.
    Raghavan, S., Smerzi, A., Fantoni, S., Shenoy, S.R.: Coherent oscillations between two weakly coupled Bose–Einstein condensates: Josephson effects, \(\pi \) oscillations, and macroscopic quantum self-trapping. Phys. Rev. A 59, 620 (1999)CrossRefGoogle Scholar
  39. 39.
    Raizen, M., Salomon, C., Niu, Q.: New light on quantum transport. Phys. Today 50, 30 (1997)CrossRefGoogle Scholar
  40. 40.
    Rosi, G., Sorrentino, F., Cacciapuoti, L., Prevedelli, M., Tino, G.M.: Precision measurement of the Newtonian gravitational constant using cold atoms. Nature (London) 510, 518 (2014)Google Scholar
  41. 41.
    Rosi, G., Cacciapuoti, L., Sorrentino, F., Menchetti, M., Prevedelli, M., Tino, G.M.: Measurement of the gravity-field curvature by atom interferometry. Phys. Rev. Lett. 114, 013001 (2015)CrossRefGoogle Scholar
  42. 42.
    Saba, M., Pasquini, T.A., Sanner, C., Shin, Y., Ketterle, W., Pritcard, D.E.: Light scattering to determine the relative phase of two Bose–Einstein condensates. Science 307, 1945 (2005)CrossRefGoogle Scholar
  43. 43.
    Sacchetti, A.: Nonlinear time-dependent Schrodinger equations: rhe Gross-Pitaevskii equation with double-well potential. J. Evolut. Equ. 4, 345–369 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Sacchetti, A.: Nonlinear double well Schrodinger equations in the semiclassical limit. J. Stat. Phys. 119, 1347–1382 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Sacchetti, A.: Spectral splitting method for nonlinear Schrodinger equations with singular potential. J. Comput. Phys. 227, 1483–1499 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Sacchetti, A.: Universal critical power for nonlinear Schrodinger equations with a symmetric double well potential. Phys. Rev. Lett. 103, 194101 (2009)CrossRefGoogle Scholar
  47. 47.
    Sacchetti, A.: Hysteresis effects in Bose–Einstein condensates. Phys. Rev. A 82, 013636 (2010)CrossRefGoogle Scholar
  48. 48.
    Sacchetti, A.: Nonlinear Schrodinger equations with multiple-well potential. Physica D 241, 1815–1824 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Sacchetti, A.: Stationary solutions to the multi-dimensional Gross–Pitaevskii equation with double-well potential. Nonlinearity 27, 26432662 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Sacchetti, A.: First principle explanation of phase transition for Bose–Einstein condensates. Eur. Phys. J. B 87, 243–248 (2014)CrossRefGoogle Scholar
  51. 51.
    Sacchetti, A.: Solution to the double-well nonlinear Schrodinger equation with Stark-type external field. J. Phys. A Math. Theor. 48, 035303 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Sacchetti, A.: Accelerated Bose-Einstein condensates in a double-well potential. Phys. Lett. A 380, 581–584 (2016)CrossRefzbMATHGoogle Scholar
  53. 53.
    Sacchetti, A.: Nonlinear Schrodinger equations with a multiple-well potential and a Stark-type perturbation. Physica D 321–322, 39–50 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Sacchetti, A.: Bloch oscillations and accelerated Bose–Einstein condensates in an optical lattice. Phys. Lett. A 381, 184–188 (2017)CrossRefGoogle Scholar
  55. 55.
    Sacchetti, A.: Bifurcation trees of Stark-Wannier ladders for accelerated Bose-Einstein condensates in an optical lattice. Phys. Rev. E 95, 062212 (2017)CrossRefGoogle Scholar
  56. 56.
    Sacchetti, A.: Nonlinear Stark–Wannier equation. SIAM J. Math. Anal. 50(6), 5783–5810 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    Shin, Y., Saba, M., Pasquini, T.A., Ketterle, W., Pritchard, D.E., Leanhardt, A.E.: Atom interferometry with Bose-Einstein condensates in a double-well potential. Phys. Rev. Lett. 92, 050405 (2004)CrossRefGoogle Scholar
  58. 58.
    Spielman, I.B., Phillips, W.D., Porto, J.V.: Condensate fraction in a 2D Bose gas measured across the Mott-insulator transition. Phys. Rev. Lett. 100, 120402 (2008)CrossRefGoogle Scholar
  59. 59.
    Stöferle, T., Moritz, H., Schori, C., Köhl, M., Esslinger, T.: Transition from a strongly interacting 1D superfluid to a Mott insulator. Phys. Rev. Lett. 92, 130403 (2004)CrossRefGoogle Scholar
  60. 60.
    Sulem, C., Sulem, P.-L.: The Nonlinear Schrodinger Equation. Self-focusing and Wave Collapse. Applied Mathematical Sciences, vol. 139. Springer, New York (1999)Google Scholar
  61. 61.
    Vardi, A., Anglin, J.R.: Bose-Einstein condensates beyond mean field theory: quantum backreaction as decoherence. Phys. Rev. Lett. 86, 568 (2001)CrossRefGoogle Scholar
  62. 62.
    Witthaut, D., Rapedius, K., Korsch, H.J.: The nonlinear Schrodinger equation for the delta-comb potential: quasi-classical chaos and bifurcations of periodic stationary solutions. J. Nonlinear Math. Phys. 16, 207–233 (2009)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Università degli Studi di Napoli "Federico II" 2019

Authors and Affiliations

  1. 1.Department of Physics, Informatics and MathematicsUniversity of Modena e Reggio EmiliaModenaItaly

Personalised recommendations