Dilation operators and integral operators on amalgam space \((L_{p},l_{q})\)


This paper establishes the Hardy–Littlewood–Pólya inequalities, the Hardy inequalities and the Hilbert inequalities on amalgam spaces. Moreover, it also gives the mapping properties of the Mellin convolutions, the Hadamard fractional integrals and the Hausdorff operators on amalgam spaces. We establish these properties by some estimates for the operator norms of the dilation operators on amalgam spaces.

This is a preview of subscription content, log in to check access.


  1. 1.

    Andersen, K.: Boundedness of Hausdorff operators on \(L^{p}({\mathbb{R}}^{n})\), \(H^{1}({\mathbb{R}}^{n})\), and \(BMO({\mathbb{R}}^{n})\). Acta Sci. Math. (Szeged) 69, 409–418 (2003)

    MathSciNet  Google Scholar 

  2. 2.

    Bennett, C., Sharpley, R.: Interpolation of Operators. Academic Press, Inc., Orlando (1988)

    Google Scholar 

  3. 3.

    Brown, G., Móricz, F.: The Hausdorff operator and the quasi Hausdorff operator on the space \(L^{p}\), \(1\le p<\infty \). Math. Inequal. Appl. 3, 105–115 (2000)

    MathSciNet  MATH  Google Scholar 

  4. 4.

    Brown, G., Móricz, F.: Multivariate Hausdorff operators on the spaces \(L^{p}({\mathbb{R}}^{n})\). J. Math. Anal. Appl. 271, 443–454 (2002)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Busby, R., Smith, H.: Product-convolution operators and mix-norm spaces. Trans. Am. Math. Soc. 263, 309–341 (1981)

    Article  Google Scholar 

  6. 6.

    Butzer, P., Kilbas, A., Trujillo, J.: Fractional calculus in the Mellin setting and Hadamard-type fractional integrals. J. Math. Anal. Appl. 269, 1–27 (2002)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Butzer, P., Kilbas, A., Trujillo, J.: Compositions of Hadamard-type fractional integration operators and the semigroup property. J. Math. Anal. Appl. 269, 387–400 (2002)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Carton-Lebrun, C., Heinig, H., Hofmann, H.: Integral operators on weighted amalgams. Stud. Math. 109, 133–157 (1994)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Chen, J.C., Fan, D.S., Li, J.: Hausdorff operators on function spaces. Chin. Ann. Math. Ser. B 33, 537–556 (2012)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Chen, J.C., Fan, D.S., Wang, S.L.: Hausdorff operators on Euclidean spaces. Appl. Math. J. Chin. Univ. 28, 548–564 (2013)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Edwards, R.E., Hewitt, E., Ritter, G.: Fourier multipliers for certain spaces of functions with compact supports. Invent. Math. 40, 37–57 (1977)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Fournier, J., Stewart, J.: Amalgams of \(L^{p}\) and \(l^{q}\). Bull. Am. Math. Soc. 13, 1–22 (1985)

    Article  Google Scholar 

  13. 13.

    Hadamard, J.: Essai sur l’etude des fonctions donnees par leur developpment de taylor. J. Mat. Pure Appl. 8, 101–186 (1892)

    MATH  Google Scholar 

  14. 14.

    Hardy, G., Littlewood, J., Pólya, G.: Inequalities. Cambridge University Press, Cambridge (1934)

    Google Scholar 

  15. 15.

    Ho, K.-P.: Hardy’s inequality and Hausdorff operators on rearrangement-invariant Morrey spaces. Publ. Math. Debr. 88, 201–215 (2016)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Ho, K.-P.: Hardy–Littlewood–Pólya inequalities and Hausdorff operators on block spaces. Math. Inequal. Appl. 19, 697–707 (2016)

    MathSciNet  MATH  Google Scholar 

  17. 17.

    Ho, K.-P.: Fourier integrals and Sobolev embedding on rearrangement-invariant quasi-Banach function spaces. Ann. Acad. Sci. Fenn. Math. 41, 897–922 (2016)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Ho, K.-P.: Fourier type transforms on rearrangement-invariant quasi-Banach function spaces. Glasg. Math. J. 61, 231–248 (2019). https://doi.org/10.1017/S0017089518000186

    MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    Ho, K.-P.: Linear operators, Fourier-integral operators and \(k\)-plane transforms on rearrangement-invariant quasi-Banach function spaces (preprint)

  20. 20.

    Ho, K.-P.: Modular Hadamard, Riemann–Liouville and Weyl fractional integrals (preprint)

  21. 21.

    Holland, F.: Harmonic analysis on amalgams of \(L^{p}\) and \(l^{q}\). J. Lond. Math. Soc. 10, 295–305 (1975)

    Article  Google Scholar 

  22. 22.

    Kellogg, C.: An extension of the Hausdorff–Young theorem. Mich. Math. J. 18, 121–127 (1971)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Lerner, A., Liflyand, E.: Multidimensional Hausdorff operators on the real Hardy spaces. J. Aust. Math. Soc. 83, 79–86 (2007)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Liflyand, E.: Boundedness of multidimensional Hausdorff operators on \(H^{1}({\mathbb{R}}^{n})\). Acta Sci. Math. (Szeged) 74, 845–851 (2008)

    MathSciNet  MATH  Google Scholar 

  25. 25.

    Liflyand, E., Miyachi, A.: Boundedness of the Hausdorff operators in \(H^{p}\) spaces, \(0<p<1\). Stud. Math. 194, 279–292 (2009)

    Article  Google Scholar 

  26. 26.

    Maligranda, L.: Generalized Hardy inequalities in rearrangement invariant spaces. J. Math. Pures Appl. 59, 405–415 (1980)

    MathSciNet  MATH  Google Scholar 

  27. 27.

    Opic, B., Kufner, A.: Hardy-Type Inequalities, Pitman Research Notes in Mathematics Series, vol. 219. Longman Scientific and Technical, Harlow (1990)

    Google Scholar 

  28. 28.

    Szeptycki, P.: Some remarks on the extended domain of Fourier transform. Bull. Am. Math. Soc. 73, 398–402 (1967)

    MathSciNet  Article  Google Scholar 

  29. 29.

    Weisz, F.: Local Hardy spaces and summability of Fourier transforms. J. Math. Anal. Appl. 362, 275–285 (2010)

    MathSciNet  Article  Google Scholar 

  30. 30.

    Wiener, N.: On the representation of functions by trigonometrical integral. Math. Z. 24, 575–616 (1926)

    MathSciNet  Article  Google Scholar 

  31. 31.

    Wiener, N.: Tauberian theorems. Ann. Math. 33, 1–100 (1932)

    MathSciNet  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Kwok-Pun Ho.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ho, K. Dilation operators and integral operators on amalgam space \((L_{p},l_{q})\). Ricerche mat 68, 661–677 (2019). https://doi.org/10.1007/s11587-019-00431-5

Download citation


  • Amalgam spaces
  • Integral operator
  • Hardy inequality
  • Hilbert inequality
  • Hadamard fractional integral
  • Mellin convolution
  • Hausdorff operator

Mathematics Subject Classification

  • 26D10
  • 26D15
  • 42B35
  • 44A05
  • 46E30