Nonlinear wave interactions for a model of extended thermodynamics with six fields
Article
First Online:
Received:
Revised:
Abstract
A nonlinear model of extended thermodynamics with six fields without the near-equilibrium approximation, in one dimensional case, is considered. A class of double wave solutions of the governing system at hand is determined and an exact description of a soliton-like wave interaction is given.
Keywords
Hyperbolic systems Double wave solutions Nonlinear wave interactionsMathematics Subject Classification
35L50 35L60 35N10Notes
Acknowledgements
This work was supported by Italian National Group of Mathematical Physics (GNFM-INdAM). The results contained in the present paper have been partially presented in Wascom 2017.
References
- 1.De Groot, S.R., Mazur, P.: Non-equilibrium Thermodynamics. Dover, New York (1984)MATHGoogle Scholar
- 2.Landau, L.D., Lifshitz, E.M.: Fluid Mechanichs. Pergamon Press, London (1958)Google Scholar
- 3.Arima, T., Ruggeri, T., Sugiyama, M., Taniguchi, S.: Extended thermodynamics of dense gases. Contin. Mech. Thermodyn. 24(4), 271–292 (2012)CrossRefMATHGoogle Scholar
- 4.Ruggeri, T., Sugiyama, M.: Rational Extended Thermodynamics Beyond the Momoatomic Gas. Springer, Cham (2015)CrossRefMATHGoogle Scholar
- 5.Arima, T., Ruggeri, T., Sugiyama, M., Taniguchi, S.: Nonlinear extended thermodynamics of real gases with 6 fields. Int. J. Nonlinear Mech. 72, 6–15 (2015)CrossRefMATHGoogle Scholar
- 6.Arima, T., Ruggeri, T., Sugiyama, M., Taniguchi, S.: Overshoot of the non-equilibrium temperature in the shock wave structure of a rarefied polyatomic gas subject to the dynamic pressure. Int. J. Nonlinear Mech. 79, 66–75 (2016)CrossRefGoogle Scholar
- 7.Arima, T., Ruggeri, T., Sugiyama, M., Taniguchi, S.: Recent results on non-linear extended thermodynamics of real gases with six fields. Part I: general theory. Ric. Mat. 65(1), 263–277 (2016)MathSciNetCrossRefMATHGoogle Scholar
- 8.Müller, I., Ruggeri, T.: Rational Extended Thermodynamics. Springer, New York (1998)CrossRefMATHGoogle Scholar
- 9.Pavić-Čolić, M., Madjaverić, D., Simić, S.: Polyatoic gases with dynamic pressure: kinetic non-linear closure and the shock structure. Int. J. Nonlinear Mech. 92, 160–175 (2017)CrossRefGoogle Scholar
- 10.Curró, C., Manganaro, N.: Double-wave solutions to quasilinear hyperbolic systems of first order PDEs. ZAMP 68, 103 (2017)MathSciNetMATHGoogle Scholar
- 11.Jeffrey, A.: Quasilinear Hyperbolic Systems and Waves. Research Notes in Mathematics. Pitman Publishing, London (1997)Google Scholar
- 12.Curró, C., Fusco, D., Manganaro, N.: A reduction procedure for generalized Riemann problems with application to nonlinear transmission lines. J. Phys. A Math. Theor. 44(33), 335205 (2011)MathSciNetCrossRefMATHGoogle Scholar
- 13.Curró, C., Fusco, D., Manganaro, N.: Differential constraints and exact solution to Riemann problems for a traffic flow model. Acta Appl Math. 122(1), 167–178 (2012)MathSciNetMATHGoogle Scholar
- 14.Curró, C., Manganaro, N.: Riemann problems and exact solutions to a traffic flow model. J. Math. Phys. 54(17), 071503 (2013)MathSciNetCrossRefMATHGoogle Scholar
- 15.Curró, C., Manganaro, N.: Generalized Riemann problems and exact solutions for \(p\)-systems with relaxation. Ric. Mat. 65(2), 549–562 (2016)MathSciNetCrossRefMATHGoogle Scholar
- 16.Manganaro, N.: Riemann problems for viscoelastic media. Rend. Lincei Mat. Appl. 28, 479–494 (2017)MathSciNetMATHGoogle Scholar
- 17.Seymour, B.R., Varley, E.: Exact solutions describing soliton-like interactions in a non dispersive medium. SIAM J. Appl. Math. 42, 804–21 (1982)MathSciNetCrossRefMATHGoogle Scholar
- 18.Curró, C., Fusco, D.: On a class of quasilinear hyperbolic reducible systems allowing for special wave interactions. ZAMP J. Appl. Math. Phys. 38, 58094 (1987)MathSciNetCrossRefMATHGoogle Scholar
- 19.Curró, C., Fusco, D., Manganaro, N.: Hodograph transformation and differential constraints for wave solutions to \(2 \times 2\) quasilinear hyperbolic nonhomogeneous systems. J. Phys. A Math. Theor. 45(19), 195207 (2012)MathSciNetCrossRefMATHGoogle Scholar
- 20.Curró, C., Fusco, D., Manganaro, N.: An exact description of nonlinear wave interaction processes ruled by \(2 \times 2\) hyperbolic systems. ZAMP 64(4), 1227–1248 (2013)MathSciNetMATHGoogle Scholar
- 21.Curró, C., Fusco, D.: A reduction method for quasilinear hyperbolic systems of multicomponent field PDEs with application to wave interaction. Int. J. Nonlinear Mech. 37, 281–295 (2002)MathSciNetCrossRefMATHGoogle Scholar
- 22.Curró, C., Fusco, D., Manganaro, N.: Exact description of simple wave interactions in multicomponent chromatography. J. Phys. A Math. Theor. 48(1), 015201 (2015)MathSciNetCrossRefMATHGoogle Scholar
- 23.Curró, C., Manganaro, N., Pavlov, M.V.: Nonlinear wave interaction problems in the three-dimensional case. Nonlinearity 30, 207–224 (2017)MathSciNetCrossRefMATHGoogle Scholar
- 24.Curró, C., Manganaro, N.: Exact solutions and wave interaction for a viscoelastic medium. AAPP Cl. Sci. Fis. Mat. Nat. 96(1), A1 (2018)Google Scholar
- 25.Yanenko, N.N.: Compatibility theory and methods of integration of systems of nonlinear partial differential equation. In: Proceedings of 4th All-Union Mathematical Congress, Nauka, Leningrad, pp. 247–252 (1964)Google Scholar
- 26.Manganaro, N., Meleshko, S.: Reduction procedure and generalized simple waves for systems written in the Riemann variables. Nonlinear Dyn. 30(1), 87–102 (2002)MathSciNetCrossRefMATHGoogle Scholar
- 27.Boillat, G.: Non linear hyperbolic fields and wavees. In: Ruggeri, T. (ed.) Recent Mathematical Methods in Nonlinear Wave Propagation. Lecture Notes in Mathematics, vol. 1640. Springer, Berlin (1995)Google Scholar
- 28.Lax, P.D.: Hyperbolic systems of conservation laws II. Commun. Pure Appl. Math. 10, 537–566 (1957)MathSciNetCrossRefMATHGoogle Scholar
- 29.Courant, R., Friedrichs, K.O.: Supersonic Flows and Shock Waves. Interscience Publishers, New York (1962)MATHGoogle Scholar
Copyright information
© Università degli Studi di Napoli "Federico II" 2018