Skip to main content
Log in

Competing risks driven by Mittag-Leffler distributions, under copula and time transformed exponential model

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

We consider a stochastic model for competing risks involving the Mittag-Leffler distribution, inspired by fractional random growth phenomena. We prove the independence between the time to failure and the cause of failure, and investigate some properties of the related hazard rates and ageing notions. We also face the general problem of identifying the underlying distribution of latent failure times when their joint distribution is expressed in terms of copulas and the time transformed exponential model. The special case concerning the Mittag-Leffler distribution is approached by means of numerical treatment. We finally adapt the proposed model to the case of a random number of independent competing risks. This leads to certain mixtures of Mittag-Leffler distributions, whose parameters are estimated through the method of moments for fractional moments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Aly, E.E.A.A., Bouzar, N.: On geometric infinite divisibility and stability. Ann. Inst. Stat. Math. 52(4), 790–799 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Amendola, A., Restaino, M., Sensini, L.: An analysis of the determinants of financial distress in Italy: a competing risks approach. Int. Rev. Econ. Finance 37, 33–41 (2015)

    Article  Google Scholar 

  3. Artikis, C.T., Artikis, P.T.: Incorporating a random number of independent competing risks in discounting a continuous uniform cash flow with rate of payment being a random sum. J. Interdiscip. Math. 10(4), 487–495 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Artikis, P.T., Artikis, C.T., Agorastos, K.: Stochastic discounting for cost effective replacements of systems under competing catastrophic risks. J. Inf. Optim. Sci. 32(1), 109–120 (2011)

    MATH  MathSciNet  Google Scholar 

  5. Balakrishnan, N., Koutras, M.V., Milienos, F.S.: A weighted Poisson cure rate model (submitted)

  6. Balakrishnan, N., Koutras, M.V., Milienos, F.S., Pal, S.: Piecewise linear approximations for cure rate models and associated inferential issues. Methodol. Comput. Appl. Probab. 1–30, (2016). doi:10.1007/s11009-015-9477-0 (online first)

  7. Bassan, B., Spizzichino, F.: Relations among univariate aging, bivariate aging and dependence for exchangeable lifetimes. J. Multivar. Anal. 93(2), 313–339 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bedford, T.: Advances in Mathematical Modeling for Reliability. IOS Press, Netherlands (2008)

  9. Beghin, L., Orsingher, E.: Fractional Poisson processes and related planar random motions. Electron. J. Probab. 14, 1790–1826 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Beghin, L., Orsingher, E.: Poisson-type processes governed by fractional and higher-order recursive differential equations. Electron. J. Probab. 15, 684–709 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  11. Carriere, J.F.: Dependent decrement theory. Trans. Soc. Actuar 46, 45–74 (1994)

    Google Scholar 

  12. Cramer, E., Schmiedt, A.B.: Progressively Type-II censored competing risks data from Lomax distributions. Comput. Stat. Data Anal. 55(3), 1285–1303 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dewan, I., Deshpande, J.V., Kulathinal, S.B.: On testing dependence between time to failure and cause of failure via conditional probabilities. Scand. J. Stat. 31(1), 79–91 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Di Crescenzo, A., Longobardi, M.: On the NBU ageing notion within the competing risks model. J. Stat. Plan. Inference 136(5), 1638–1654 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Di Crescenzo, A., Longobardi, M.: Competing risks within shock models. Scientiae Mathematicae Japonicae 67(2), 125–135 (2008)

    MATH  MathSciNet  Google Scholar 

  16. Di Crescenzo, A., Martinucci, B., Meoli, A.: Fractional growth process with two kinds of jumps. Computer Aided Systems Theory-EUROCAST 2015, pp. 158–165 (2015)

  17. Di Crescenzo, A., Martinucci, B., Meoli, A.: A fractional counting process and its connection with the Poisson process. ALEA 13(1), 291–307 (2016)

    MATH  MathSciNet  Google Scholar 

  18. Di Crescenzo, A., Pellerey, F.: Improving series and parallel systems through mixtures of duplicated dependent components. Naval Res. Logist. 58(5), 411–418 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. Dykstra, R., Kochar, S., Robertson, T.: Restricted tests for testing independence of time to failure and cause of failure in a competing-risks model. Can. J. Stat. 26(1), 57–68 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  20. Fujita, Y.: A generalization of the results of Pillai. Ann. Inst. Stat. Math. 45(2), 361–365 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  21. Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.V.: Mittag-Leffler Functions, Related Topics and Applications. Springer Berlin (2014)

  22. Hilfer, R.: Stochastische Modelle für die betriebliche Planung. München, GBI-Verlag (1985)

  23. Hilfer, R., Anton, L.: Fractional master equations and fractal time random walks. Phys. Rev. E 51(2), R848 (1995)

    Article  Google Scholar 

  24. Kaishev, V.K., Dimitrova, D.S., Haberman, S.: Modelling the joint distribution of competing risks survival times using copula functions. Insur. Math. Econ. 41(3), 339–361 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  25. Korolev, V.Y., Zeifman, A.I.: Convergence of random sums and statistics constructed from samples with random sizes to the Linnik and Mittag-Leffler distributions and their generalizations. J. Korean Stat. Soc. (2016). doi:10.1007/s11009-015-9477-0 (online first)

  26. Kozubowski, T.J.: Exponential mixture representation of geometric stable distributions. Ann. Inst. Stat. Math. 52(2), 231–238 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  27. Kozubowski, T.J.: Fractional moment estimation of Linnik and Mittag-Leffler parameters. Math. Comput. Model. 34(9), 1023–1035 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  28. Lin, G.D.: On the Mittag-Leffler distributions. J. Stat. Plan. Inference 74(1), 1–9 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  29. Meerschaert, M.M., Nane, E., Vellaisamy, P.: The fractional Poisson process and the inverse stable subordinator. Electron. J. Probab. 16, 1600–1620 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  30. Nelsen, R.B.: An Introduction to Copulas. Springer Science and Business Media, New York (2007)

  31. Pareek, B., Kundu, D., Kumar, S.: On progressively censored competing risks data for Weibull distributions. Comput. Stat. Data Anal. 53(12), 4083–4094 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  32. Pellerey, F.: On univariate and bivariate aging for dependent lifetimes with Archimedean survival copulas. Kybernetika 44(6), 795–806 (2008)

    MATH  MathSciNet  Google Scholar 

  33. Pillai, R.N.: On Mittag-Leffler functions and related distributions. Ann. Inst. Stat. Math. 42(1), 157–161 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  34. Saxena, R.K., Mathai, A.M., Haubold, H.J.: Unified fractional kinetic equation and a fractional diffusion equation. Astrophys. Space Sci. 290(3–4), 299–310 (2004)

    Article  Google Scholar 

  35. Scalas, E.: The application of continuous-time random walks in finance and economics. Physica A 362(2), 225–239 (2006)

    Article  MathSciNet  Google Scholar 

  36. Schwarz, M., Jongbloed, G., Van Keilegom, I.: On the identifiability of copulas in bivariate competing risks models. Can. J. Stat. 41(2), 291–303 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  37. Tas, K., Machado, J.T., Baleanu, D.: Mathematical Methods in Engineering. Springer Science and Business Media, Dordrecht (Netherlands) (2007)

  38. Tsiatis, A.: A nonidentifiability aspect of the problem of competing risks. Proc. Nat. Acad. Sci. 72(1), 20–22 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  39. Wang, A.: Properties of the marginal survival functions for dependent censored data under an assumed Archimedean copula. J. Multivar. Anal. 129, 57–68 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  40. Weron, K., Kotulski, M.: On the Cole-Cole relaxation function and related Mittag-Leffler distribution. Phys. A Stat. Mech. Appl. 232(1), 180–188 (1996)

    Article  Google Scholar 

Download references

Acknowledgments

This research is partially supported by GNCS-INdAM and Regione Campania (Legge 5). The authors thank the anonymous referee for various useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Di Crescenzo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Crescenzo, A., Meoli, A. Competing risks driven by Mittag-Leffler distributions, under copula and time transformed exponential model. Ricerche mat 66, 361–381 (2017). https://doi.org/10.1007/s11587-016-0304-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-016-0304-x

Keywords

Mathematics Subject Classification

Navigation