Advertisement

Ricerche di Matematica

, Volume 66, Issue 1, pp 221–231 | Cite as

Shock structure and multiple sub-shocks in binary mixtures of Eulerian fluids

  • Fiammetta Conforto
  • Andrea Mentrelli
  • Tommaso Ruggeri
Article

Abstract

The problem of sub-shock formation within a shock structure solution of hyperbolic systems of balance laws is investigated for a binary mixture of multi-temperature Eulerian fluids. The main purpose of this work is the analysis of the ranges of Mach numbers characterizing shock-structure solutions with different features, continuous or not, and to show the existence of ranges, below the maximum unperturbed characteristic velocity, for which each constituent of the mixture may develop a sub-shock within a smooth shock structure profile. The theoretical results are supported by numerical calculations.

Keywords

Mixtures of Eulerian fluids sub-shock formation Rankine-Hugoniot conditions 

Notes

Acknowledgments

This work has been supported by GNFM/INdAM Young Researchers Project 2014 ‘Subshock formation in gas mixtures’ (PI: F. Conforto); GNFM/INdAM Young Researchers Project 2015 ‘An Eulerian/Lagrangian model for combustion fronts’ (PI: A. Mentrelli) and by University of Bologna FARB 2012 Project ‘Extended Thermodynamics of Non-Equilibrium Processes from Macro- to Nano-Scale’ (PI: T. Ruggeri).

References

  1. 1.
    Boillat, G., Ruggeri, T.: Hyperbolic principal subsystem: entropy convexity and subcharacteristic conditions. Arch. Rat. Mech. Anal. 137, 305–320 (1997)Google Scholar
  2. 2.
    Boillat, G., Ruggeri, T.: On the shock structure problem for hyperbolic system of balance laws and convex entropy. Cont. Mech. Thermodyn. 10(5), 285–292 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Brini, F., Ruggeri, T.: The Riemann problem for a binary non-reacting mixture of Euler fluids. In: Proceedings XII Int. Conference on Waves and Stability in Continuous Media. Monaco, R. et al. (eds.) World Scientific, Singapore, pp. 102–108 (2004)Google Scholar
  4. 4.
    Brini, F., Ruggeri, T.: On the Riemann Problem with structure in extended thermodynamics. Rend. Circ. Mat. Palermo, ser. II, 78, 31–43 (2006)Google Scholar
  5. 5.
    Mentrelli, A., Ruggeri, T.: Asymptotic behavior of riemann and riemann with structure problems for a \(2\times 2\) hyperbolic dissipative system. Rend. Circ. Mat. Palermo, ser. II, 78, 31–43 (2006)Google Scholar
  6. 6.
    Brini, F., Ruggeri, T.: On the Riemann problem in extended thermodynamics. In: Proceedings of the 10th International Conference on Hyperbolic Problems (HYP2004). Asakura, F. et al. (eds.) Yokohama Publishers Inc., Vol. I, pp. 319–326 (2006)Google Scholar
  7. 7.
    Mentrelli, A., Ruggeri, T.: The Riemann problem for a hyperbolic model of incompressible fluids. Int. J. Nonlinear Mech. 51, 87–96 (2013)CrossRefGoogle Scholar
  8. 8.
    Liu, T.-P.: Linear and nonlinear large-time behavior of solutions of general systems of hyperbolic conservation laws. Comm. Pure Appl. Math. 30, 767–796 (1977); Large-time behavior of solutions of initial and initial-boundary value problems of a general system of hyperbolic conservation laws. Commun. Math. Phys. 55, 163–177 (1977)Google Scholar
  9. 9.
    Müller, I., Ruggeri, T.: Rational extended thermodynamics (2nd Ed.). Springer (1998)Google Scholar
  10. 10.
    Arima, T., Mentrelli, A., Ruggeri, T.: Molecular Extended thermodynamics of rarefied polyatomic gases and wave velocities for increasing number of moments. Ann. Phys. 345, 111–140 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Ruggeri, T., Simić, S.: Non linear wave propagation in binary mixtures of Euler fluids. In: Proceedings XII Int. Conference on Waves and Stability in Continuous Media. Monaco R. et al. (eds.) World Scientific, Singapore, pp. 455–462 (2004)Google Scholar
  12. 12.
    Ruggeri, T., Simić, S.: Average temperature and Maxwellian iteration in multi-temperature mixtures of fluids. Phys. Rev. E 80, 026317 (2009)CrossRefGoogle Scholar
  13. 13.
    Madjarevic, D., Simić, S.: Shock structure in helium-argon mixture—a comparison of hyperbolic multi-temperature model with experiment. EPL 102, 44002 (2013)CrossRefGoogle Scholar
  14. 14.
    Madjarević, D., Ruggeri, T., Simić, S.: Shock structure and temperature overshoot in macroscopic multi-temperature model of mixtures. Phys. Fluids 26, 106102 (2014)CrossRefGoogle Scholar
  15. 15.
    Ruggeri, T., Sugiyama, M.: Rational Extended Thermodynamics beyond the Monatomic Gas. Springer Cham, Heidelberg, New York, Dordrecht, London (2015)CrossRefzbMATHGoogle Scholar
  16. 16.
    Bisi, M., Martalò, G., Spiga, G.: Shock wave structure of multi-temperature Euler equations from kinetic theory for a binary mixture. Acta Appl. Math. 132(1), 95–105 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Bisi, M., Conforto, F., Martalò, G.: Sub-shock formation in Grad 10 moment equations for a binary gas mixture. Continuum Mech. Thermodyn. (2015). doi: 10.1007/s00161-015-0476-8 zbMATHGoogle Scholar
  18. 18.
    Gilbarg, D., Paolucci, D.: The structure of shock waves in the continuum theory of fluids. J. Rat. Mech. Anal. 2, 617–642 (1953)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Ruggeri, T.: Breakdown of shock-wave-structure solutions. Phys. Rev. E 47(6), 4135–4140 (1993)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Ruggeri, T.: Non existence of shock structure solutions for hyperbolic dissipative systems including characteristic shocks. Appl. Anal. 57, 23–33 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Weiss, W.: Continuous shock structure in extended thermodynamics. Phys. Rev. E 52(6), R5760–R5763 (1995)CrossRefGoogle Scholar
  22. 22.
    Currò, C., Fusco, D.: Discontinuous travelling wave solutions for a class of dissipative hyperbolic models. Rend. Mat. Acc. Linceis. 916(1), 61–71 (2005)Google Scholar
  23. 23.
    Bisi, M., Martalò, G., Spiga, G.: Multi-temperature fluid-dynamic model equations from kinetic theory in a reactive gas: the steady shock problem. Comp. Math. Appl. 66, 1403–1417 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Conforto, F., Monaco, R., Ricciardello, A.: Discontinuous shock structure in a reacting mixture modelled by grad 13 moment approximation. Acta Appl. Math. 132(1), 225–236 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Bisi, M., Conforto, F., Martalò, G.: Subshock formation in reacting gas mixtures. Proceedings of the conference Particle systems and Partial Differential Equations III, University of Minho, 2014. P. Gonalves, A.J. Soares (eds.), Springer, (2016 in press)Google Scholar
  26. 26.
    Conforto, F., Mentrelli, A., Ruggeri, T.: Shock structure and multiple sub-shocks in hyperbolic systems of balance laws: the case of a multi-temperature mixture of Eulerian fluids. Preprint (2015)Google Scholar
  27. 27.
    Boillat, G., Ruggeri, T.: Moment equations in the kinetic theory and wave velocities. Cont. Mech. Thermodyn. 9, 205–212 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Mentrelli, A., Ruggeri, T., Sugiyama, M., Zhao, N.: Interaction between a shock and an acceleration wave in a perfect gas for increasing shock strength. Wave Motion 45, 498–517 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Zhao, N., Mentrelli, A., Ruggeri, T., Sugiyama, M.: Admissible shock waves and shock-induced phase transitions in a van der waals fluid. Phys. Fluids 23, 086101 (2011)CrossRefzbMATHGoogle Scholar

Copyright information

© Università degli Studi di Napoli "Federico II" 2016

Authors and Affiliations

  • Fiammetta Conforto
    • 1
  • Andrea Mentrelli
    • 2
  • Tommaso Ruggeri
    • 2
  1. 1.Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della TerraUniversity of MessinaMessinaItaly
  2. 2.Department of Mathematics and Alma Mater Research Center on Applied Mathematics (AM²)University of BolognaBolognaItaly

Personalised recommendations