Molecular extended thermodynamics: comparison between rarefied polyatomic and monatomic gas closures

Abstract

Molecular extended thermodynamics is justified at the mesoscopic level by the moment equations associated with the Boltzmann equation. For polyatomic gases we have a binary hierarchy of moments in contrast with the usual single hierarchy for monatomic gases. In this paper, taking one-dimensional space variables for simplicity, we review the closure of the system of the moment equations for polyatomic gases with the use of the maximum entropy principle, which is equivalent to the entropy principle. Then we consider the singular limit where the degrees of freedom of a molecule approach 3, and we prove that, by imposing appropriate initial conditions, the solutions for polyatomic gases converge to the ones for monatomic gases. As examples of the singular limit, the asymptotic behaviors of linear waves and light scattering based on the linearized system of field equations are briefly presented.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

Notes

  1. 1.

    Throughout the paper, summation with respect to repeated indexes is assumed, where the range of the sum is to be understood in the context: when the index represents a spatial coordinate, the range of the sum is from 1 to 3; in all the other cases the sum is intended over the variability region of the repeated indexes.

References

  1. 1.

    Müller, I., Ruggeri, T.: Rational Extended Thermodynamics, Springer Tracts in Natural Philosophy, vol. 37, II edn. Springer, New York (1998)

    Google Scholar 

  2. 2.

    Müller, I., Ruggeri, T.: Extended Thermodynamics, Springer Tracts in Natural Philosophy, vol. 37, I edn. Springer, New York (1993)

    Google Scholar 

  3. 3.

    Dreyer, W.: Maximization of the entropy in non-equilibrium. J. Phys. A Math. Gen. 20, 6505–6517 (1987)

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Boillat, G., Ruggeri, T.: Moment equations in the kinetic theory of gases and wave velocities. Contin. Mech. Thermodyn. 9, 205–212 (1997)

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Liu, I.-S., Müller, I., Ruggeri, T.: Relativistic thermodynamics of gases. Ann. Phys. 169, 191–219 (1986)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Ruggeri, T., Sugiyama, M.: Rational Extended Thermodynamics beyond the Monatomic Gas ISBN 978-3-319-13340-9. Springer, Cham (2015)

  7. 7.

    Pavić, M., Ruggeri, T., Simić, S.: Maximum entropy principle for rarefied polyatomic gases. Phys. A 392, 1302–1317 (2013)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Arima, T., Mentrelli, A., Ruggeri, T.: Molecular extended thermodynamics of rarefied polyatomic gases and wave velocities for increasing number of moments. Ann. Phys. 345, 111–140 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Arima, T., Mentrelli, A., Ruggeri, T.: Extended thermodynamics of rarefied polyatomic gases and characteristic velocities. Rendiconti Lincei Matematica e Applicazioni 25, 275–291 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Bourgat, J.-F., Desvillettes, L., Le Tallec, P., Perthame, B.: Microreversible collisions for polyatomic gases. Eur. J. Mech. B/Fluids 13, 237–254 (1994)

    MathSciNet  MATH  Google Scholar 

  11. 11.

    Arima, T., Taniguchi, S., Ruggeri, T., Sugiyama, M.: Extended thermodynamics of dense gases. Contin. Mech. Thermodyn. 24, 271–292 (2011)

    Article  MATH  Google Scholar 

  12. 12.

    Arima, T., Sugiyama, M.: Characteristic features of extended thermodynamics of dense gases. Atti della Accademia Peloritana dei Pericolanti 91(S1), A1–A15 (2013)

    MathSciNet  Google Scholar 

  13. 13.

    Ruggeri, T., Sugiyama, M.: Recent developments in extended thermodynamics of dense and rarefied polyatomic gases. Acta Appl. Math. 132, 527–548 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Arima, T., Taniguchi, S., Ruggeri, T., Sugiyama, M.: Dispersion relation for sound in rarefied polyatomic gases based on extended thermodynamics. Contin. Mech. Thermodyn. 25, 727–737 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Arima, T., Taniguchi, S., Ruggeri, T., Sugiyama, M.: A study of linear waves based on extended thermodynamics for rarefied polyatomic gases. Acta Appl. Math. 132, 15–25 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Taniguchi, S., Arima, T., Ruggeri, T., Sugiyama, M.: Thermodynamic theory of the shock wave structure in a rarefied polyatomic gas: Beyond the Bethe–Teller theory. Phys. Rev. E 89, 013025 (2014)

    Article  Google Scholar 

  17. 17.

    Taniguchi, S., Arima, T., Ruggeri, T., Sugiyama, M.: Shock wave structure in a rareed polyatomic gas based on extended thermodynamics. Acta Appl. Math. 132, 583–593 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    Arima, T., Taniguchi, S., Sugiyama, M.: Light scattering in rarefied polyatomic gases based on extended thermodynamics. In: Proceedings of The 34th Symposium on Ultrasonic Electronics. pp. 15–16 (2013)

  19. 19.

    Barbera, E., Brini, F., Sugiyama, M.: Heat transfer problem in a van der Waals gas. Acta Appl. Math. 132, 41–50 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  20. 20.

    Arima, T., Barbera, E., Brini, F., Sugiyama, M.: The role of the dynamic pressure in stationary heat conduction of a rarefied polyatomic gas. Phys. Lett. A 378, 2695–2700 (2014)

    Article  MATH  Google Scholar 

  21. 21.

    Arima, T., Taniguchi, S., Ruggeri, T., Sugiyama, M.: Monatomic rarefied gas as a singular limit of polyatomic gas in extended thermodynamics. Phys. Lett. A 377, 2136–2140 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  22. 22.

    Arima, T., Ruggeri, T., Sugiyama, M., Taniguchi, S.: Monatomic gas as a singular limit of polyatomic gas in molecular extended thermodynamics with many moments (submitted)

  23. 23.

    Borgnakke, C., Larsen, P.S.: Statistical collision model for Monte Carlo simulation of polyatomic gas mixture. J. Comput. Phys. 18, 405–420 (1975)

    Article  Google Scholar 

  24. 24.

    Desvillettes, L., Monaco, R., Salvarani, F.: A kinetic model allowing to obtain the energy law of polytropic gases in the presence of chemical reactions. Eur. J. Mech. B Fluids 24, 219–236 (2005)

    MathSciNet  Article  MATH  Google Scholar 

  25. 25.

    Arima, T., Taniguchi, S., Ruggeri, T., Sugiyama, M.: Extended thermodynamics of real gases with dynamic pressure: An extension of Meixner’s theory. Phys. Lett. A 376, 2799–2803 (2012)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Arima, T., Ruggeri, T., Sugiyama, M., Taniguchi, S.: On the six-field model of fluids based on extended thermodynamics. Meccanica 49, 2181–2187 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  27. 27.

    Taniguchi, S., Arima, T., Ruggeri, T., Sugiyama, M.: Effect of dynamic pressure on the shock wave structure in a rarefied polyatomic gas. Phys. Fluids 26, 016103 (2014)

    Article  MATH  Google Scholar 

  28. 28.

    Arima, T., Ruggeri, T., Sugiyama, M., Taniguchi, S.: Nonlinear extended thermodynamics of real gases with 6 fields. Int. J. Non-Linear Mech. 72, 6–15 (2015)

    Article  MATH  Google Scholar 

  29. 29.

    Ruggeri, T.: Non-linear maximum entropy principle for a polyatomic gas subject to the dynamic pressure. Bull. Inst. Math. Acad. Sin. (New Ser.) 11, 1 (2016)

    MathSciNet  MATH  Google Scholar 

  30. 30.

    Taniguchi, S., Arima, T., Ruggeri, T., Sugiyama, M.: Overshoot of the nonequilibrium temperature in the shock wave structure of a rarefied polyatomic gas subject to the dynamic pressure. Int. J. Non-Linear. Mech. 79, 66 (2016)

    Article  Google Scholar 

  31. 31.

    Arima, T., Ruggeri, T., Sugiyama, M., Taniguchi, S.: Recent results on nonlinear extended thermodynamics of real gases with six fields. Part I: general theory. Ricerche mat (2016). doi:10.1007/s11587-016-0283-y

  32. 32.

    Taniguchi, S., Arima, T., Ruggeri, T., Sugiyama, M.: Recent results on nonlinear extended thermodynamics of real gases with six fields. Part II: shock wave structure. Ricerche mat (2016). doi:10.1007/s11587-016-0280-1

  33. 33.

    Zhdanov, V.M.: The kinetic theory of a polyatomic gas. Sov. Phys. JETP. 26, 1187–1191 (1968)

    Google Scholar 

  34. 34.

    Ruggeri, T.: Galilean invariance and entropy principle for systems of balance laws. The structure of extended thermodynamics. Contin. Mech. Thermodyn. 1, 3–20 (1989)

    MathSciNet  Article  MATH  Google Scholar 

  35. 35.

    Muracchini, A., Ruggeri, T., Seccia, L.: Dispersion relation in the high frequency limit and non-linear wave stability for hyperbolic dissipative systems. Wave Motion 15, 143–158 (1992)

    MathSciNet  Article  MATH  Google Scholar 

  36. 36.

    Banach, Z., Larecki, W., Ruggeri, T.: Dispersion relation in the limit of high frequency for a hyperbolic systems with multiple eigenvalues. Wave Motion 51, 955 (2014)

    MathSciNet  Article  Google Scholar 

  37. 37.

    Rahimi, B., Struchtrup, H.: Capturing non-equilibrium phenomena in rarefied polyatomic gases: A high-order macroscopic model. Phys. Fluids 26, 052001 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by Japan Society of Promotion of Science (JSPS) No. 15K21452 (T.A.) and No. 25390150 (M.S.), and by National Group of Mathematical Physics GNFM-INdAM and by University of Bologna: FARB 2012 Project Extended Thermodynamics of Non-Equilibrium Processes from Macro- to Nano-Scale (T.R.).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tommaso Ruggeri.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arima, T., Ruggeri, T., Sugiyama, M. et al. Molecular extended thermodynamics: comparison between rarefied polyatomic and monatomic gas closures. Ricerche mat 66, 1–13 (2017). https://doi.org/10.1007/s11587-016-0279-7

Download citation

Keywords

  • Extended Thermodynamics
  • Rarefied Polyatomic Gases
  • Rarefied Monatomic Gases
  • Singular Limit
  • Kinetic Theory and Moments

Mathematics Subject Classification

  • 82C35 Irreversible thermodynamics, including Onsager-Machlup theory
  • 76N15 Gas dynamics, general
  • 82C40 Kinetic theory of gases