Skip to main content

Advertisement

Log in

Band gap engineering of graphene through quantum confinement and edge distortions

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

Based on the density functional theory approach we explore the chances endured by energy gap (EG) of semiconducting (armchair) graphene nanoribbons (AGNRs) when Stone-Wales (SW) defects are placed inside their lattices. Our results show that the AGNRs, which belong to the \(3\hbox {m} + 2\) family experience an increase in their EG value. On the other hand, those belonging to 3m and \(3\hbox {m} + 1\) families experience decrease in their EG. The maximum observed EG for pristine and distorted ribbons were \(\sim \)2.6 and \(\sim \)1.6 eV, respectively. Our results can be useful to understand the semiconducting properties of wider graphene nanoribbons which are already available experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films, 5696. Nature 306, 666–669 (2004)

    Google Scholar 

  2. Jin, M., Jeong, H.K., Yu, W.J., Bae, D.J., Kang, B.R., Lee, Y.H.: Graphene oxide thin film field effect transistors without reduction. J. Phys. D Appl. Phys. 42, 135109 (2009)

    Article  Google Scholar 

  3. Lemme, M. C., Echtermeyer, T.J., Baus, M., Kurz, H.: A graphene field-effect device. arXiv:cond-mat/0703208 (2007)

  4. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A.: Two Dimensional Gas Massless Dirac Fermions Graphene 438, 197–200 (2005)

    Google Scholar 

  5. Bolotin, K.I., Sikes, K.J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P., Stormer, H.L.: Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008)

    Article  Google Scholar 

  6. Hong, W., Xu, Y., Lu, G., Li, C., Shi, G.: Transparent graphene/PEDOT-PSS composite films as counter electrodes of dye-sensitized solar cells. Electrochem. Commun. 10, 1555–1558 (2008)

    Article  Google Scholar 

  7. Capone, F., Gentile, M., Hill, A.A.: Penetrative convection in a fluid layer with throughflow. Ricerche di Matematica 57(2), 251–260 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cimatti, G.: A class of explicit solutions for the Soret-Dufour boundary value problem in arbitrary domains. Ricerche di Matematica 59(2), 199–205 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Haddad, S.A.M., Straughan, B.: Porous convection and thermal oscillations. Ricerche di Matematica 61(2), 307–320 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lu, Y.H., Wu, R.Q., Shen, L., Yang, M., Sha, Z.D., Cai, Y.Q., He, P.M., Feng, Y.P.: Effects of edge passivation by hydrogen on electronic structure of armchair graphene nanoribbon and band gap engineering. Appl. Phys. Lett. 94, 122111 (2009)

    Article  Google Scholar 

  11. Xia, F., Farmer, D.B., Lin, Y., Avouris, P.: Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano lett. 10, 715–718 (2010)

    Article  Google Scholar 

  12. Allen, M.J., Tung, V.C., Kaner, R.B.: Honeycomb carbon: a review of graphene. Chem. Rev. 110, 132–145 (2009)

    Article  Google Scholar 

  13. Cooper, D.R. D’Anjou, B., Ghattamaneni, N., Harack, B., Hilke, M., Horth, A., Majlis, N., Massicotte, M., Vandsburger, L., Whiteway, E.: Experimental review of graphene, ISRN Condensed Matter Physics, 2012 (2012)

  14. Raza, H., Kan, E.C.: Field modulation in bilayer graphene band structure. J. Phys. Condensed Matter 21, 102202 (2009)

    Article  Google Scholar 

  15. Boukhvalov, D.W., Katsnelson, M.I.: Chemical functionalization of graphene. J. Phys. Condensed Matter 21, 34 (2009)

    Article  Google Scholar 

  16. Barone, V., Hod, O., Scuseria, G.E.: Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett. 6, 2748–2754 (2006)

    Article  Google Scholar 

  17. Kan, E., Yang, J., Li, Z.: Graphene nanoribbons: geometric, electronic, and magnetic Properties. In: Physics and Applications of Graphene, pp. 331–348. Intech (2011)

  18. Son, Y.W., Cohen, M.L., Louie, S.G.: Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 216803 (2006)

    Article  Google Scholar 

  19. Strumia, A.: Waves, particles and fields: an explicitly covariant approach. Ricerche di Matematica 62(1), 1–17 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Banhart, F., Kotakoski, J., Krasheninnikov, A.V.: Structural defects in graphene. ACS Nano 5, 26–41 (2010)

    Article  Google Scholar 

  21. Rodrigues, J.N.B., Gonçalves, P.A.D., Rodrigues, N.F.G., Ribeiro, R.M., Lopez dos Santos, J.M.B., Peres, N.M.R.: Zigzag graphene nanoribbon edge reconstruction with Stone-Wales defects. Phys. Rev. B 84, 55435 (2011)

    Article  Google Scholar 

  22. Lu, P., Zhang, Z., Guo, W.: Electronic and magnetic properties of zigzag edge graphene nanoribbons with Stone-Wales defects. Phys. Lett. A 373, 3354–3358 (2009)

    Article  Google Scholar 

  23. Jacobberger, R. M., Kiraly, B., Fortin-Deschenes, M., Levesque, P. L., McElhinny, K. M., Brady, G. J. Delgado, R. R., Roy, S. S., Mannix, A., Lagally, M. G.: Direct oriented growth of armchair graphene nanoribbons on germanium, Nature communications, 6 (2015)

  24. Kresse, G., Furthmüller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996)

    Article  Google Scholar 

  25. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)

    Article  Google Scholar 

  26. Wang, G.: Effect Edge Hydrogen Passivation Saturation Carrier Mob. Armchair Graphene Nanoribbons 533, 74–77 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuela Carini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villamagua, L., Carini, M., Stashans, A. et al. Band gap engineering of graphene through quantum confinement and edge distortions. Ricerche mat 65, 579–584 (2016). https://doi.org/10.1007/s11587-016-0278-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-016-0278-8

Keywords

Navigation