Skip to main content
Log in

Modelling and simulation of wildland fire in the framework of the level set method

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

Among the modelling approaches that have been proposed for the simulation of wildfire propagation, two have gained considerable attention in recent years: the one based on a reaction-diffusion equation, and the one based on the level set method. These two approaches, traditionally seen in competition, do actually lead to similar equation models when the level set method is modified taking into account random effects as those due to turbulent hot air transport and fire spotting phenomena. The connection between these two approaches is here discussed and the application of the modified level set method to test cases of practical interest is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sullivan, A.: A review of wildland fire spread modelling, 1990-present, 1: physical and quasi-physical models. Int. J. Wildland Fire 18, 349–368 (2009)

    Article  Google Scholar 

  2. Sullivan, A.: A review of wildland fire spread modelling, 1990-present, 2: empirical and quasi-empirical models. Int. J. Wildland Fire 18, 369–386 (2009)

    Article  Google Scholar 

  3. Sullivan, A.: Wildland surface fire spread modelling, 1990–2007. 3: Simulation and mathematical analogue models. Int. J. Wildland Fire 18, 387–403 (2009)

    Article  Google Scholar 

  4. Asensio, M.I., Ferragut, L.: On a wildland fire model with radiation. Int. J. Numer. Meth. Eng. 54, 137–157 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Mandel, J., Bennethum, L.S., Beezley, J.D., Coen, J.L., Douglas, C.C., Kim, M., Vodacek, A.: A wildland fire model with data assimilation. Math. Comput. Simulat. 79, 584–606 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Babak, P., Bourlioux, A., Hillen, T.: The effect of wind on the propagation of an idealized forest fire. SIAM J. Appl. Math. 70, 1364–1388 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Sethian, J.A., Smereka, P.: Level set methods for fluid interfaces. Ann. Rev. Fluid Mech. 35, 341–372 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Mallet, V., Keyes, D.E., Fendell, F.E.: Modeling wildland fire propagation with level set methods. Comput. Math. Appl. 57, 1089–1101 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Rehm, R.G., McDermott, R.J.: Fire-front propagation using the level set method. Tech. Note 1611, Natl. Inst. Stand. Technol. (2009)

  10. Pagnini, G., Massidda, L.: The randomized level set method to model turbulence effects in wildland fire propagation. In: Proc. of the Int. Conf. on Fire Behaviour and Risk (ICFBR2011), 126–131 (2012)

  11. Pagnini, G., Massidda, L.: Modelling turbulence effects in wildland fire propagation by the randomized level set method. CRS4 Technical Report 2012/PM12a, July 2012. Revised Version August 2014. http://publications.crs4.it/pubdocs/2012/PM12a/pagnini_massidda-levelset (2014)

  12. Filippi, J.B., Bosseur, F., Mari, C., Lac, C., Moigne, P.L., Cuenot, B., Veynante, D., Cariolle, D., Balbi, J.H.: Coupled atmosphere-wildland fire modelling. J. Adv. Model. Earth Syst. 1, 1–9 (2009)

    Google Scholar 

  13. Mandel, J., Beezley, J.D., Kochanski, A.K.: Coupled atmosphere-wildland fire modeling with WRF 3.3 and SFIRE 2011. Geosci. Model Dev 4, 591–610 (2011)

    Article  Google Scholar 

  14. Potter, B.E.: Atmospheric interactions with wildland fire behaviour—I. basic surface interactions, vertical profiles and synoptic structures. Int. J. Wildland Fire 21, 779–801 (2012)

    Article  Google Scholar 

  15. Potter, B.E.: Atmospheric interactions with wildland fire behaviour—II. plume and vortex dynamics. Int. J. Wildland Fire 21, 802–817 (2012)

    Article  Google Scholar 

  16. Sardoy, N., Consalvi, J.L., Porterie, B., Fernandez-Pello, A.C.: Modeling transport and combustion of firebrands from burning trees. Combust. Flame 150, 151–169 (2007)

    Article  Google Scholar 

  17. Perryman, H.A.: A mathematical model of spot fires and their management implications. Master’s thesis, Humboldt State University, Arcata (2009). http://hdl.handle.net/2148/551

  18. Sardoy, N., Consalvi, J.L., Kaiss, A., Fernandez-Pello, A.C., Porterie, B.: Numerical study of ground-level distribution of firebrands generated by line fires. Combust. Flame 154, 478–488 (2008)

    Article  Google Scholar 

  19. Boychuk, D., Braun, W.J., Kulperger, R.J., Krougly, Z.L., Stanford, D.A.: A stochastic forest fire growth model. Environ. Ecol. Stat. 16, 133–151 (2009)

    Article  MathSciNet  Google Scholar 

  20. Pagnini, G., Mentrelli, A.: Modelling wildland fire propagation by tracking random fronts. Nat. Hazards Earth Syst. Sci. 14, 2249–2263 (2014)

    Article  Google Scholar 

  21. Kaur, I., Mentrelli, A., Bosseur, F., Filippi, J.-B., Pagnini, G.: Wildland fire propagation modelling: a novel approach reconciling models based on moving interface methods and on reaction-diffusion equations. In: Proceedings of the International Conference Applications of Mathematics 2015 (Prague, CZ; November 18–21, 2015); Eds. J. Brandts et al.; Institute of Mathematics AS CR, Prague, 85–99 (2015)

  22. Kaur, I., Mentrelli, A., Bosseur, F., Filippi J.B., Pagnini, G.: Turbulence and fire-spotting effects into wild-land fire simulators. Commun. Nonlinear Sci. Numer. Simul. (2016, in press). doi: 10.1016/j.cnsns.2016.03.003

  23. Montenegro, R., Plaza, A., Ferragut, L., Asensio, M.I.: Application of a nonlinear evolution model to fire propagation. Nonlinear Anal. Theory Methods Appl. 30, 2873–2882 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Serón, F.J., Gutiérrez, D., Magallón, J., Ferragut, L., Asensio, M.I.: The evolution of a wildland forest fire front. Visual Comput. 21, 152–169 (2005)

    Article  Google Scholar 

  25. Rothermel, R.C.: A mathematical model for predicting fire spread in wildland fires. Tech. Rep. Research Paper INT-115, USDA Forest Service, Intermountain Forest and Range Experiment Station, Ogden, Utah 84401 (1972)

  26. Finney, M.: Calculation of fire spread rates across random landscapes. Int. J. Wildland Fire 12, 167–174 (2003)

    Article  Google Scholar 

  27. Balbi, J.H., Morandini, F., Silvani, X., Filippi, J.B., Rinieri, F.: A physical model for wildland fires. Combust. Flame 156, 2217–2230 (2009)

    Article  Google Scholar 

  28. Klimontovich, Y.L.: Nonlinear Brownian motion. Phys.-Uspekh. 37, 737–767 (1994)

    Article  Google Scholar 

  29. Pagnini, G., Bonomi, E.: Lagrangian formulation of turbulent premixed combustion. Phys. Rev. Lett. 107, 044503 (2011)

    Article  Google Scholar 

  30. Dafermos, C.M.: Continuous solutions for balance laws. Ric. Mat. 55, 79–91 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. De Angelis, M., Renno, P.: Existence, uniqueness and a priori estimates for a nonlinear integro-differential equation. Ric. Mat. 57, 95–109 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mentrelli, A., Pagnini, G.: Random front propagation in fractional diffusive systems. Commun. Appl. Ind. Math 6(2), e-504 (2014)

    MathSciNet  MATH  Google Scholar 

  33. Mentrelli, A., Pagnini, G.: Front propagation in anomalous diffusive media governed by time-fractional diffusion. J. Comput. Phys. 293, 427–441 (2015)

    Article  MathSciNet  Google Scholar 

  34. Byram, G.M.: Combustion of forest fuels. In: Davis, K.P. (ed.) Forest Fire: Control and Use, pp. 61–89. McGraw Hill, New York (1959)

    Google Scholar 

Download references

Acknowledgments

This research was supported by GNFM/INdAM Young Researchers Project 2015 ‘An Eulerian/Lagrangian model for combustion fronts’, by MINECO under Grant MTM2013-40824-P, by Bizkaia Talent and European Commission through COFUND programme under Grant AYD-000-226, by the Basque Government through the BERC 2014-2017 program, and by the Spanish Ministry of Economy and Competitiveness MINECO: BCAM Severo Ochoa accreditation SEV-2013-0323.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Mentrelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mentrelli, A., Pagnini, G. Modelling and simulation of wildland fire in the framework of the level set method. Ricerche mat 65, 523–533 (2016). https://doi.org/10.1007/s11587-016-0272-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-016-0272-1

Keywords

Navigation