Ricerche di Matematica

, Volume 65, Issue 2, pp 523–533 | Cite as

Modelling and simulation of wildland fire in the framework of the level set method

  • Andrea Mentrelli
  • Gianni Pagnini


Among the modelling approaches that have been proposed for the simulation of wildfire propagation, two have gained considerable attention in recent years: the one based on a reaction-diffusion equation, and the one based on the level set method. These two approaches, traditionally seen in competition, do actually lead to similar equation models when the level set method is modified taking into account random effects as those due to turbulent hot air transport and fire spotting phenomena. The connection between these two approaches is here discussed and the application of the modified level set method to test cases of practical interest is shown.


Wildland fire simulation Level set method Reaction-diffusion model 



This research was supported by GNFM/INdAM Young Researchers Project 2015 ‘An Eulerian/Lagrangian model for combustion fronts’, by MINECO under Grant MTM2013-40824-P, by Bizkaia Talent and European Commission through COFUND programme under Grant AYD-000-226, by the Basque Government through the BERC 2014-2017 program, and by the Spanish Ministry of Economy and Competitiveness MINECO: BCAM Severo Ochoa accreditation SEV-2013-0323.


  1. 1.
    Sullivan, A.: A review of wildland fire spread modelling, 1990-present, 1: physical and quasi-physical models. Int. J. Wildland Fire 18, 349–368 (2009)CrossRefGoogle Scholar
  2. 2.
    Sullivan, A.: A review of wildland fire spread modelling, 1990-present, 2: empirical and quasi-empirical models. Int. J. Wildland Fire 18, 369–386 (2009)CrossRefGoogle Scholar
  3. 3.
    Sullivan, A.: Wildland surface fire spread modelling, 1990–2007. 3: Simulation and mathematical analogue models. Int. J. Wildland Fire 18, 387–403 (2009)CrossRefGoogle Scholar
  4. 4.
    Asensio, M.I., Ferragut, L.: On a wildland fire model with radiation. Int. J. Numer. Meth. Eng. 54, 137–157 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Mandel, J., Bennethum, L.S., Beezley, J.D., Coen, J.L., Douglas, C.C., Kim, M., Vodacek, A.: A wildland fire model with data assimilation. Math. Comput. Simulat. 79, 584–606 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Babak, P., Bourlioux, A., Hillen, T.: The effect of wind on the propagation of an idealized forest fire. SIAM J. Appl. Math. 70, 1364–1388 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Sethian, J.A., Smereka, P.: Level set methods for fluid interfaces. Ann. Rev. Fluid Mech. 35, 341–372 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Mallet, V., Keyes, D.E., Fendell, F.E.: Modeling wildland fire propagation with level set methods. Comput. Math. Appl. 57, 1089–1101 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Rehm, R.G., McDermott, R.J.: Fire-front propagation using the level set method. Tech. Note 1611, Natl. Inst. Stand. Technol. (2009)Google Scholar
  10. 10.
    Pagnini, G., Massidda, L.: The randomized level set method to model turbulence effects in wildland fire propagation. In: Proc. of the Int. Conf. on Fire Behaviour and Risk (ICFBR2011), 126–131 (2012)Google Scholar
  11. 11.
    Pagnini, G., Massidda, L.: Modelling turbulence effects in wildland fire propagation by the randomized level set method. CRS4 Technical Report 2012/PM12a, July 2012. Revised Version August 2014. (2014)
  12. 12.
    Filippi, J.B., Bosseur, F., Mari, C., Lac, C., Moigne, P.L., Cuenot, B., Veynante, D., Cariolle, D., Balbi, J.H.: Coupled atmosphere-wildland fire modelling. J. Adv. Model. Earth Syst. 1, 1–9 (2009)Google Scholar
  13. 13.
    Mandel, J., Beezley, J.D., Kochanski, A.K.: Coupled atmosphere-wildland fire modeling with WRF 3.3 and SFIRE 2011. Geosci. Model Dev 4, 591–610 (2011)CrossRefGoogle Scholar
  14. 14.
    Potter, B.E.: Atmospheric interactions with wildland fire behaviour—I. basic surface interactions, vertical profiles and synoptic structures. Int. J. Wildland Fire 21, 779–801 (2012)CrossRefGoogle Scholar
  15. 15.
    Potter, B.E.: Atmospheric interactions with wildland fire behaviour—II. plume and vortex dynamics. Int. J. Wildland Fire 21, 802–817 (2012)CrossRefGoogle Scholar
  16. 16.
    Sardoy, N., Consalvi, J.L., Porterie, B., Fernandez-Pello, A.C.: Modeling transport and combustion of firebrands from burning trees. Combust. Flame 150, 151–169 (2007)CrossRefGoogle Scholar
  17. 17.
    Perryman, H.A.: A mathematical model of spot fires and their management implications. Master’s thesis, Humboldt State University, Arcata (2009).
  18. 18.
    Sardoy, N., Consalvi, J.L., Kaiss, A., Fernandez-Pello, A.C., Porterie, B.: Numerical study of ground-level distribution of firebrands generated by line fires. Combust. Flame 154, 478–488 (2008)CrossRefGoogle Scholar
  19. 19.
    Boychuk, D., Braun, W.J., Kulperger, R.J., Krougly, Z.L., Stanford, D.A.: A stochastic forest fire growth model. Environ. Ecol. Stat. 16, 133–151 (2009)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Pagnini, G., Mentrelli, A.: Modelling wildland fire propagation by tracking random fronts. Nat. Hazards Earth Syst. Sci. 14, 2249–2263 (2014)CrossRefGoogle Scholar
  21. 21.
    Kaur, I., Mentrelli, A., Bosseur, F., Filippi, J.-B., Pagnini, G.: Wildland fire propagation modelling: a novel approach reconciling models based on moving interface methods and on reaction-diffusion equations. In: Proceedings of the International Conference Applications of Mathematics 2015 (Prague, CZ; November 18–21, 2015); Eds. J. Brandts et al.; Institute of Mathematics AS CR, Prague, 85–99 (2015)Google Scholar
  22. 22.
    Kaur, I., Mentrelli, A., Bosseur, F., Filippi J.B., Pagnini, G.: Turbulence and fire-spotting effects into wild-land fire simulators. Commun. Nonlinear Sci. Numer. Simul. (2016, in press). doi:  10.1016/j.cnsns.2016.03.003
  23. 23.
    Montenegro, R., Plaza, A., Ferragut, L., Asensio, M.I.: Application of a nonlinear evolution model to fire propagation. Nonlinear Anal. Theory Methods Appl. 30, 2873–2882 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Serón, F.J., Gutiérrez, D., Magallón, J., Ferragut, L., Asensio, M.I.: The evolution of a wildland forest fire front. Visual Comput. 21, 152–169 (2005)CrossRefGoogle Scholar
  25. 25.
    Rothermel, R.C.: A mathematical model for predicting fire spread in wildland fires. Tech. Rep. Research Paper INT-115, USDA Forest Service, Intermountain Forest and Range Experiment Station, Ogden, Utah 84401 (1972)Google Scholar
  26. 26.
    Finney, M.: Calculation of fire spread rates across random landscapes. Int. J. Wildland Fire 12, 167–174 (2003)CrossRefGoogle Scholar
  27. 27.
    Balbi, J.H., Morandini, F., Silvani, X., Filippi, J.B., Rinieri, F.: A physical model for wildland fires. Combust. Flame 156, 2217–2230 (2009)CrossRefGoogle Scholar
  28. 28.
    Klimontovich, Y.L.: Nonlinear Brownian motion. Phys.-Uspekh. 37, 737–767 (1994)CrossRefGoogle Scholar
  29. 29.
    Pagnini, G., Bonomi, E.: Lagrangian formulation of turbulent premixed combustion. Phys. Rev. Lett. 107, 044503 (2011)CrossRefGoogle Scholar
  30. 30.
    Dafermos, C.M.: Continuous solutions for balance laws. Ric. Mat. 55, 79–91 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    De Angelis, M., Renno, P.: Existence, uniqueness and a priori estimates for a nonlinear integro-differential equation. Ric. Mat. 57, 95–109 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Mentrelli, A., Pagnini, G.: Random front propagation in fractional diffusive systems. Commun. Appl. Ind. Math 6(2), e-504 (2014)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Mentrelli, A., Pagnini, G.: Front propagation in anomalous diffusive media governed by time-fractional diffusion. J. Comput. Phys. 293, 427–441 (2015)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Byram, G.M.: Combustion of forest fuels. In: Davis, K.P. (ed.) Forest Fire: Control and Use, pp. 61–89. McGraw Hill, New York (1959)Google Scholar

Copyright information

© Università degli Studi di Napoli "Federico II" 2016

Authors and Affiliations

  1. 1.Department of Mathematics and Alma Mater Research Center on Applied Mathematics (AM2)University of BolognaBolognaItaly
  2. 2.Basque Center for Applied Mathematics (BCAM)BilbaoSpain
  3. 3.Ikerbasque, Basque Foundation for ScienceBilbaoSpain

Personalised recommendations