Skip to main content
Log in

Ground states for Schrödinger–Poisson type systems

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

In this paper we consider the following elliptic system in \({\mathbb{R}^3}\)

$$\qquad\left\{\begin{array}{ll}-\Delta u+u+\lambda K(x)\phi u=a(x)|u|^{p-1}u \quad &x \in {\mathbb{R}}^{3}\\ -\Delta \phi=K(x)u^{2} \quad &x \in {\mathbb{R}}^{3}\end{array}\right.$$

where λ is a real parameter, \({p\in (1, 5)}\) if λ < 0 while \({p\in (3, 5)}\) if λ > 0 and K(x), a(x) are non-negative real functions defined on \({\mathbb{R}^3}\) . Assuming that \({\lim_{|x|\rightarrow+\infty}K(x)=K_{\infty} >0 }\) and \({\lim_{|x|\rightarrow+\infty}a(x)=a_{\infty} >0 }\) and satisfying suitable assumptions, but not requiring any symmetry property on them, we prove the existence of positive ground states, namely the existence of positive solutions with minimal energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosetti A.: On Schrödinger–Poisson systems. Milan J. Math. 76, 257–274 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Azzollini A.: Concentration and compactness in nonlinear Schrödinger–Poisson system with a general nonlinearity. J. Diff. Eqns. 249(7), 1746–1765 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bahri A., Lions P.L.: On the existence of a positive solution of semilinear elliptic equations in unbounded domains. Ann. Inst. Henri Poincaré 14(3), 365–413 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benci V., Fortunato D.: An eigenvalue problem for the Schrödinger–Maxwell equations. Top. Meth. Nonlinear Anal. 11, 283–293 (1998)

    MathSciNet  MATH  Google Scholar 

  5. Benci V., Fortunato D.: Solitary waves of the nonlinear Klein–Gordon equation coupled with Maxwell equations. Rev. Math. Phys. 14, 409–420 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brezis H., Lieb E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. AMS 88, 486–490 (1988)

    Article  MathSciNet  Google Scholar 

  7. Cerami G., Vaira G.: Positive solutions for some non autonomous Schrödinger–Poisson Systems. J. Diff. Eqns. 248(3), 521–543 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ianni, I., Ruiz, D.: Ground and bound states for a static Schrödinger–Poisson–Slater problem (preprint)

  9. Siciliano G.: Multiple solutions for Schrödinger–Poisson–Slater system. J. Math. Anal. Appl. 365(1), 288–299 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Talenti, G.: Elliptic equations and rearrangements. Ann. Scuola Norm. Sup. Pisa 4(3) (1976)

  11. Willem, M.: Minimax Theorems, PNDEA, vol. 24. Birkhäuser, Basel (1996)

  12. Willem M.: Analyse Harmonique réelle. Hermann, Paris (1995)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giusi Vaira.

Additional information

Communicated by V. Coti-Zelata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaira, G. Ground states for Schrödinger–Poisson type systems. Ricerche mat. 60, 263–297 (2011). https://doi.org/10.1007/s11587-011-0109-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-011-0109-x

Keywords

Mathematics Subject Classification (2000)

Navigation