Skip to main content
Log in

A note on concentrations for integral two-scale problems

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

This work is devoted to the characterization of the asymptotic behavior, as \({\{\varepsilon_n\}}\) goes to zero, of a family of integral functionals of the form \({\int_{\Omega}f(x,\langle x/\varepsilon_n \rangle, \nabla u_{n}(x))\, dx}\) in terms of measures of oscillation and concentration associated to the sequence \({\{(\langle x/\varepsilon_n\rangle, \nabla u_{n}(x))\}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allard W.: On the first variation of a varifold. Ann. Math. 95, 417–491 (1972)

    Article  MathSciNet  Google Scholar 

  2. Alibert J.J., Bouchitté G.: Non-uniform integrability and generalized Young measures. J. Convex Anal. 4, 129–147 (1997)

    MATH  MathSciNet  Google Scholar 

  3. Almgren F.J. Jr: Existence and regularity almost everywhere of solutions to elliptic variational problems among surfaces of varying topological type and singularity structure. Ann. Math. 87, 321–391 (1968)

    Article  MathSciNet  Google Scholar 

  4. Babadjian J.-F., Baía M., Santos P.M.: Characterization of two-scale Young-measures and applications to homogenization. Appl. Math. Optim. 57, 69–97 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Baía M., Fonseca I.: The limit behavior of a family of variational multiscale problems. Indiana Univ. Math. J. 56, 1–50 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Balder E.J.: Lectures on Young measure theory and its applications in economics, Workshop on Measure Theory and Real Analysis. Rend. Instit. Mat. Univ. Trieste 31, 1–69 (2000)

    MATH  MathSciNet  Google Scholar 

  7. Ball J.M.: A Version of the Fundamental Theorem for Young Measures, PDE’s and Continuum Models for Phase Transitions, Lecture Notes Physics, vol. 334, pp. 207–215. Springer, Berlin (1989)

    Google Scholar 

  8. Braides, A.: A short introduction to Young measures. Lecture notes SISSA (1999)

  9. Brezis H.: Analyse Fonctionnelle. Masson, Paris (1983)

    MATH  Google Scholar 

  10. Bocea M., Fonseca I.: A Young measure approach to a nonlinear membrane model involving the bending moment. Proc. Roy. Soc. Edinburgh Sect. A 134, 845–883 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dal Maso G., DeSimone A., Mora M.G., Morini M.: Time-dependent systems of generalized Young measures. Netw. Heterog. Media 2, 1–36 (2007)

    MATH  MathSciNet  Google Scholar 

  12. DiPerna R., Madja A.: Concentrations in regularizations for 2−D incompressible flow. Comm. Pure Appl. Math. 60, 301–345 (1987)

    Article  Google Scholar 

  13. DiPerna R., Madja A.: Oscillations and concentrations in weak solutions of the incompressible fluid equations. Commun. Math. Phys. 108, 667–689 (1987)

    Article  MATH  Google Scholar 

  14. DiPerna R., Madja A.: Reduced Hausdorff dimension and concentration-cancellation for two-dimensional incompressible flow. J. Amer. Math. Soc. 1, 59–95 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  15. Dugundji J.: Topology. Allyn and Bacon, Inc., Boston (1989)

    Google Scholar 

  16. Federer H., Ziemer W.P.: The Lebesgue set of a function whose distributional derivatives are pth−power summable. Indiana Univ. Math. J. 22, 139–158 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  17. Folland G.B.: Real Analysis, Modern Techniques and their Applications. Wiley, New York (1984)

    MATH  Google Scholar 

  18. Fonseca I.: Lower semicontinuity of surface energies. Proc. Roy. Soc. Edinburgh 120A, 99–115 (1992)

    MathSciNet  Google Scholar 

  19. Fonseca I., Müller S.: A-quasiconvexity, lower semicontinuity, and Young measures. SIAM J. Math. Anal. 30(6), 1355–1390 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  20. Fonseca I., Müller S., Pedregal P.: Analysis of concentration and oscillation effects generated by gradients. SIAM J. Math. Anal. 29, 736–756 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kinderlehrer D., Pedregal P.: Characterization of Young measures generated by gradients. Arch. Rational Mech. Anal. 115, 329–365 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  22. Lions, P.L.: The concentration-compactness principle in the calculus of variations—the locally compact case, Parts I and II, Ann. Inst. H. Poincaré, 1, 109–145 and 223–283 (1984)

    Google Scholar 

  23. Lions, P.L.: The concentration-compactness principle in the calculus of variations—the limit case, Parts I and II, Riv. Mat. Iberoamericana, 1, 145–201 (1984) and 45–121 (1985)

    Google Scholar 

  24. Málek J., Nečas J., Rokyta M., Ružička M.: Weak and Measure-Valued Solutions to Evolutionary PDEs, Applied Mathematics and Mathematical Compution, vol. 13. Chapman & Hall, London (1996)

    Google Scholar 

  25. Müller S.: Variational Models for Microstructure and Phase Transitions, Lecture Notes in Math., vol. 1713. Springer, Berlin (1999)

    Google Scholar 

  26. Pedregal P.: Parametrized Measures and Variational Principles, Progress in Nonlinear Differential Equations and their Applications, vol. 30. Birkhäuser Verlag, Basel (1997)

    Google Scholar 

  27. Reshetnyak Y.: Weak convergence and completely additive vector functions on a set. Sibirsk, Mat. Zh. 9, 1039–1045 (1968)

    MATH  Google Scholar 

  28. Roubíček, T.: Relaxation in Optimization Theory and Variational Calculus De Gruyter Series in Nonlinear Analysis and Applications. Berlin (1997)

  29. Santos P.M.: A—quasi-convexity with variable coefficients. Proc. Roy. Soc. Edinburgh Sect. A 134, 1219–1237 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  30. Tartar, L.: Compensated compactness and applications to partial differential equations. In: Nonlinear analysis and Mechanics: Heriot-Watt Symposium, Vol. IV, pp. 136–212, Res. Notes in Math., 39, Pitman, Boston, Mass.-London (1979)

  31. Valadier M.: Désintégration d’une mesure sur un produit. C. R. Acad Ac. Paris Sér. A-B 276, 33–35 (1973)

    MATH  MathSciNet  Google Scholar 

  32. Valadier M.: Young Measures, Methods of Nonconvex Analysis, Lecture Notes in Math, pp. 152–188. Springer, Berlin (1990)

    Google Scholar 

  33. Young L.C.: Lectures on the Calculus of Variations and Optimal Control Theory. W. B. Saunders, Philadelphia (1969)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarida Baía.

Additional information

Communicated by R.De Arcangelis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baía, M., Santos, P.M. A note on concentrations for integral two-scale problems. Ricerche mat. 59, 1–22 (2010). https://doi.org/10.1007/s11587-009-0069-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-009-0069-6

Keywords

Mathematics Subject Classification (2000)

Navigation