Skip to main content
Log in

An NH4F-assisted chemical bath synthesis of NiCo2O4 nanoforms onto stainless-steel substrate as supercapacitor electrode

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

An NH4F-assisted chemical synthesis was carried out to develop NiCo2O4 nanostructures for supercapacitor (SC) electrode application. The study reveals that the presence of NH4F in the precursor during the chemical bath deposition (CBD) process changes the morphology of NiCo2O4 nanostructures from interconnected nanosheets to nanoform arrays on stainless steel (SS) substrates. This morphological transformation significantly influences the electrochemical charge storage properties of the SC electrode. Various structural characterizations further supported this conversion process. The nanoform arrays of NiCo2O4 exhibited an enhanced capacity, showing 548 mC cm−2 (913 C g−1) at j = 0.25 mA cm−2, more than the capacity of 488 mC cm−2 (813 C g−1) observed for interconnected nanosheets. This improvement is likely attributed to the enhanced electronic conduction and ionic diffusion pathways facilitated by the mesoporous electrode surface. In addition, an aqueous asymmetric hybrid SC was assembled using activated carbon on SS as the negative electrode and a nanoform NiCo2O4 on SS as the positive electrode. The hybrid SC exhibited a maximum capacity of 46 mC cm−2 at 5 mV s−1, accompanied by a maximum energy density of 7.70 μWh cm−2 and a maximum power density of 9751.61 μW cm−2, while maintaining stability at 59% over 10000 GCD cycles. This study provides insight into the influence of additives during CBD process on the electrochemical storage performance of SC electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig 3.
Fig. 4
Fig. 5.
Fig. 6

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Kim BK, Sy S, Yu A, Zhang J (2015) Electrochemical Supercapacitors for Energy Storage and Conversion, in: Handb. Clean Energy Syst., John Wiley & Sons, Ltd, Chichester, UK. pp. 1–25. https://doi.org/10.1002/9781118991978.hces112

  2. Huang J, Xie Y, You Y, Yuan J, Xu Q, Xie H, Chen Y (2023) Rational Design of Electrode Materials for Advanced Supercapacitors: From Lab Research to Commercialization. Adv Funct Mater 33. https://doi.org/10.1002/adfm.202213095

  3. Lokhande VC, Lokhande AC, Lokhande CD, Kim JH, Ji T (2016) Supercapacitive composite metal oxide electrodes formed with carbon, metal oxides and conducting polymers. J Alloys Compd 682:381–403. https://doi.org/10.1016/j.jallcom.2016.04.242

    Article  CAS  Google Scholar 

  4. Yadlapalli RT, Alla RR, Kandipati R, Kotapati A (2022) Super capacitors for energy storage: Progress, applications and challenges. J Energy Storage 49:104194. https://doi.org/10.1016/j.est.2022.104194

    Article  Google Scholar 

  5. Waghmode RB, Maile NC, Lee DS, Torane AP (2020) Chemical bath synthesis of NiCo2O4 nanoflowers with nanorods like thin film for flexible supercapacitor application-effect of urea concentration on structural conversion. Electrochim Acta 350:136413. https://doi.org/10.1016/j.electacta.2020.136413

    Article  CAS  Google Scholar 

  6. Thakur S, Maiti S, Sardar K, Besra N, Bairi P, Panigrahi K, Chanda K, Paul T, Chattopadhyay KK (2021) New Class of Trimetallic Oxide Hierarchical Mesoporous Array on Woven Fabric: Electrode for high-Performance and Stable battery type Ultracapacitor. J Energy Storage 35:102249. https://doi.org/10.1016/j.est.2021.102249

    Article  Google Scholar 

  7. Dubal DP, Gomez-Romero P, Sankapal BR, Holze R (2015) Nickel cobaltite as an emerging material for supercapacitors: An overview. Nano Energy 11:377–399. https://doi.org/10.1016/j.nanoen.2014.11.013

    Article  CAS  Google Scholar 

  8. Mahadik SM, Chodankar NR, Han Y, Dubal DP, Patil S (2021) Nickel Cobaltite: A Positive Electrode Material for Hybrid Supercapacitors. Chemsuschem 14:5384–5398. https://doi.org/10.1002/cssc.202101465

    Article  CAS  PubMed  Google Scholar 

  9. Sun Y, Wu F, He L, Zhang S, Luo H, Hu B, Zhou M, Fang L (2022) NiCo2O4 nanoneedle-nanosheet hybrid structure on CC substrate for high-performance flexible supercapacitors. J Alloys Compd 902:163634. https://doi.org/10.1016/j.jallcom.2022.163634

    Article  CAS  Google Scholar 

  10. Bhagwan J, Nagaraju G, Ramulu B, Sekhar SC, Yu JS (2019) Rapid synthesis of hexagonal NiCo2O4 nanostructures for high-performance asymmetric supercapacitors. Electrochim Acta 299:509–517. https://doi.org/10.1016/j.electacta.2018.12.174

    Article  CAS  Google Scholar 

  11. Zhang L, Zhang D, Ren Z, Huo M, Dang G, Min F, Zhang Q, Xie J (2017) Mesoporous NiCo2O4 micro/nanospheres with hierarchical structures for supercapacitors and methanol electro-oxidation. ChemElectroChem 4:441–449. https://doi.org/10.1002/celc.201600638

    Article  CAS  Google Scholar 

  12. Dhavale SB, Patil VL, Beknalkar SA, Teli AM, Patil AH, Patil AP, Shin JC, Patil PS (2021) Study of solvent variation on controlled synthesis of different nanostructured NiCo2O4 thin films for supercapacitive application. J Colloid Interface Sci 588:589–601. https://doi.org/10.1016/j.jcis.2020.12.057

    Article  CAS  PubMed  Google Scholar 

  13. Xiang N, Ni Y, Ma X (2015) Shape-controlled synthesis of NiCo2O4 microstructures and their application in supercapacitors. Chem Asian J 10:1972–1978. https://doi.org/10.1002/asia.201500386

    Article  CAS  PubMed  Google Scholar 

  14. Wang Z, Hu X, Wang L, Jin B, Zou G, Huang Z, Liu Q, Hu G, Zhang K, Park JH (2019) Rationally designed hybrids of NiCo2O4 and polymeric carbon nitride as faradaic electrodes with enhanced electrochemical performance. Electrochim Acta 299:717–726. https://doi.org/10.1016/j.electacta.2019.01.060

    Article  CAS  Google Scholar 

  15. Wang Z, Su H, Liu F, Chu X, Yan C, Gu B, Huang H, Yang T, Chen N, Han Y, Deng W, Zhang H, Yang W (2019) Establishing highly-efficient surface faradaic reaction in flower-like NiCo2O4 nano-/micro-structures for next-generation supercapacitors. Electrochim Acta 307:302–309. https://doi.org/10.1016/j.electacta.2019.03.227

    Article  CAS  Google Scholar 

  16. Dai J, Zhao R, Xiang J, Wu F, Xin L, Zhang Y, Ma S (2019) Facile Hydrothermal synthesis and their electrochemical performance of NiCo2O4 nanosheets. Sci Adv Mater 11:379–385. https://doi.org/10.1166/sam.2019.3443

    Article  CAS  Google Scholar 

  17. Kavinkumar T, Naresh N, Mathew G, Neppolian B (2022) Urchin-like porous NiCo2O4 nanostructure: Morphology control using porous reduced graphene oxide nanosheets for high performance flexible transparent energy storage devices. J Alloys Compd 891:162052. https://doi.org/10.1016/j.jallcom.2021.162052

    Article  CAS  Google Scholar 

  18. Wang C, Sui G, Guo D, Li J, Zhuang Y, Guo W, Zhou Y, Yang X, Chai D-F (2022) Inverted design of oxygen vacancies modulated NiCo2O4 and Co3O4 microspheres with superior specific surface area as competitive bifunctional materials for supercapacitor and hydrogen evolution reaction. J Energy Storage 49:104083. https://doi.org/10.1016/j.est.2022.104083

    Article  Google Scholar 

  19. Van Nguyen T, Son LT, Van Thuy V, Thao VD, Hatsukano M, Higashimine K, Maenosono S, Chun S-E, Thu TV (2020) Facile synthesis of Mn-doped NiCo2O4 nanoparticles with enhanced electrochemical performance for a battery-type supercapacitor electrode. Dalt Trans 49:6718–6729. https://doi.org/10.1039/D0DT01177K

    Article  CAS  Google Scholar 

  20. Zhao N, Fan H, Zhang M, Ma J, Zhang W, Wang C, Li H, Jiang X, Cao X (2019) Investigating the large potential window of NiCo2O4 supercapacitors in neutral aqueous electrolyte. Electrochim Acta 321:134681. https://doi.org/10.1016/j.electacta.2019.134681

    Article  CAS  Google Scholar 

  21. Maile NC, Shinde SK, Patil KS, Fulari AV, Shahzad A, Lee DS, Fulari VJ (2019) Capacitive property studies of inexpensive SILAR synthesized polyaniline thin films for supercapacitor application. SN Appl Sci 1:1333. https://doi.org/10.1007/s42452-019-1403-6

    Article  CAS  Google Scholar 

  22. Pandit B, Pande SA, Sankapal BR (2019) Facile SILAR Processed Bi2S3:PbS Solid Solution on MWCNTs for High-performance Electrochemical Supercapacitor. Chinese J Chem 37:1279–1286. https://doi.org/10.1002/cjoc.201900222

    Article  CAS  Google Scholar 

  23. Raut SS, Sankapal BR, Hossain MSA, Pradhan S, Salunkhe RR, Yamauchi Y (2018) Zinc ferrite anchored multiwalled carbon nanotubes for high-performance supercapacitor applications. Eur J Inorg Chem 2018:137–142. https://doi.org/10.1002/ejic.201700836

    Article  CAS  Google Scholar 

  24. Pande SA, Pandit B, Sankapal BR (2019) Vanadium oxide anchored MWCNTs nanostructure for superior symmetric electrochemical supercapacitors. Mater Des 182:107972. https://doi.org/10.1016/j.matdes.2019.107972

    Article  CAS  Google Scholar 

  25. Wang M, Li Q, Yu H, Hur SH, Kim EJ (2013) Phase-controlled preparation of TiO2 films and micro(nano)spheres by low-temperature chemical bath deposition. J Alloys Compd 578:419–424. https://doi.org/10.1016/j.jallcom.2013.06.065

    Article  CAS  Google Scholar 

  26. Kim DU, Shanmugam R, Choi MR, Yoo B (2012) Formation of CoNi alloy thin films on silicon by electroless deposition. Electrochim Acta 75:42–48. https://doi.org/10.1016/j.electacta.2012.04.051

    Article  CAS  Google Scholar 

  27. Garcia-Caballero AD, Rodriguez-Rosales K, Mayen-Hernandez SA, Perez-Garcia CE, Santos-Cruz J, de Moure-Flores F (2022) Optoelectronic properties of CdS thin films doped with F by CBD and its application in CdTe-based solar cells, in: 2022 19th Int. Conf. Electr. Eng. Comput. Sci. Autom. Control, IEEE. pp. 1–6. https://doi.org/10.1109/CCE56709.2022.9975877

  28. Gou J, Xie S (2023) Controllable preparation of nickel–cobalt selenides as supercapacitor electrode materials. Ionics (Kiel) 29:1239–1244. https://doi.org/10.1007/s11581-023-04898-z

    Article  CAS  Google Scholar 

  29. Xie S, Gou J, Yang Z, Gao Z, Li HW (2022) Fabrication of NH4F-tuned (Ni, Co)2(CO3)(OH)2 for supercapacitor electrode. J Mater Sci Mater Electron 33:15074–15085. https://doi.org/10.1007/s10854-022-08425-0

    Article  CAS  Google Scholar 

  30. Ganguli S, Das S, Kumari S, Inta HR, Tiwari AK, Mahalingam V (2018) Effect of intrinsic properties of anions on the electrocatalytic activity of NiCo2O4 and NiCo2OxS4-x grown by chemical bath deposition. ACS Omega 3:9066–9074. https://doi.org/10.1021/acsomega.8b00952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Strano V, Urso RG, Scuderi M, Iwu KO, Simone F, Ciliberto E, Spinella C, Mirabella S (2014) Double role of HMTA in ZnO nanorods grown by chemical bath deposition. J Phys Chem C 118:28189–28195. https://doi.org/10.1021/jp507496a

    Article  CAS  Google Scholar 

  32. Zhang G, Lou XW (2013) General solution growth of mesoporous NiCo2O4 nanosheets on various conductive substrates as high-performance electrodes for supercapacitors. Adv Mater 25:976–979. https://doi.org/10.1002/adma.201204128

    Article  CAS  PubMed  Google Scholar 

  33. Bulakhe RN, Shin SC, Bin In J, In I (2022) Chemically synthesized mesoporous nickel cobaltite electrodes of different morphologies for high-performance asymmetric supercapacitors. J Energy Storage 55:105730. https://doi.org/10.1016/j.est.2022.105730

    Article  Google Scholar 

  34. Deng F, Yu L, Cheng G, Lin T, Sun M, Ye F, Li Y (2014) Synthesis of ultrathin mesoporous NiCo2O4 nanosheets on carbon fiber paper as integrated high-performance electrodes for supercapacitors. J Power Sources 251:202–207. https://doi.org/10.1016/j.jpowsour.2013.11.048

    Article  CAS  Google Scholar 

  35. Liu X, Shi S, Xiong Q, Li L, Zhang Y, Tang H, Gu C, Wang X, Tu J (2013) Hierarchical NiCo2O4@NiCo2O4 Core/Shell Nanoflake Arrays as High-Performance Supercapacitor Materials. ACS Appl Mater Interfaces 5:8790–8795. https://doi.org/10.1021/am402681m

    Article  CAS  PubMed  Google Scholar 

  36. Li Y, Lin X, Du J (2021) Iron-Facilitated Transformation of Mesoporous Spinel Nanosheets into Oxyhydroxide Active Species in the Oxygen Evolution Reaction. Inorg Chem 60:19373–19380. https://doi.org/10.1021/acs.inorgchem.1c03202

    Article  CAS  PubMed  Google Scholar 

  37. Maile N, Shinde S, Lim Y, Kim B, Ghani AA, Tahir K, Hussain M, Jang J, Lee DS (2023) Enhanced electrochemical performance of hybrid composite microstructure of CuCo2O4 microflowers-NiO nanosheets on 3D Ni foam as positive electrode for stable hybrid supercapacitors. Ceram Int 49:1800–1810. https://doi.org/10.1016/j.ceramint.2022.09.143

    Article  CAS  Google Scholar 

  38. Maile NC, Ghani AA, Shinde SK, Kim B, Lim Y, Tahir K, Devarayapalli KC, Mohite SV, Jang J, Lee DS (2022) Electrochemical studies of Ni(OH)2, NiO, and Ni3S2 nanostructures on Ni-foam toward binder-free positive electrode for hybrid supercapacitor application. Int J Energy Res 46:22501–22515. https://doi.org/10.1002/er.8553

    Article  CAS  Google Scholar 

  39. Kaliaraj GS, Ramadoss A (2020) Nickel–zinc sulfide nanocomposite thin film as an efficient cathode material for high-performance hybrid supercapacitors. Mater Sci Semicond Process 105:104709. https://doi.org/10.1016/j.mssp.2019.104709

    Article  CAS  Google Scholar 

  40. Maile NC, Shinde SK, Kim D-Y, Devarayapalli KC, Lee DS (2023) Synthesis of nickel cobalt sulfide on Ni foam for improved electrochemical energy storage: Effect of binder-free reverse pulse potentiostatic electrodeposition and redox additive. J Alloys Compd 967:171845. https://doi.org/10.1016/j.jallcom.2023.171845

    Article  CAS  Google Scholar 

  41. Li Z, He S, Ji C, Mi H, Lei C, Li Z, Pang H, Fan Z, Yu C, Qiu J (2019) Hierarchical bimetallic hydroxides built by porous nanowire-lapped bundles with ultrahigh areal capacity for stable hybrid solid-state supercapacitors. Adv Mater Interfaces 6:1–10. https://doi.org/10.1002/admi.201900959

    Article  CAS  Google Scholar 

  42. Zhang W, Li W, Li S (2023) Molten salt assisted self-activated carbon with controllable architecture for aqueous supercapacitor. J Mater Sci Technol 156:107–117. https://doi.org/10.1016/j.jmst.2022.12.079

    Article  CAS  Google Scholar 

  43. Liao H, Zhong L, Deng Y, Chen H, Liao G, Xiao Y, Cheng B, Lei S (2023) A systematic study on Equisetum ramosissimum Desf. derived honeycomb porous carbon for supercapacitors: Insight into the preparation-structure-performance relationship. Appl Surf Sci 623:157010. https://doi.org/10.1016/j.apsusc.2023.157010

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by financial assistance for a major research project under Seed Money through S. M. Joshi College, Hadapsar, Pune, India. (Ref-RSS/SMJC/RAC/MRP/03, [622/2021-22,31/12/21]); the Mid-Career Researcher Program (NRF-2021R1A2C2007841) from the Korean National Research Foundation, funded by the Korean Ministry of Science, ICT, and Future Planning.

Author information

Authors and Affiliations

Authors

Contributions

R.B. Waghmode: Conceptualization, Methodology, Experiments, Writing—original draft, Writing—review editing, Funding. N. S. Gaikwad: Investigation, Validation. Jung-Rae Kim: Conceptualization, Supervision, Funding. N. C. Maile: Conceptualization, Supervision, Resources, validation, Writing – review & editing Funding.

Corresponding author

Correspondence to N. C. Maile.

Ethics declarations

Ethical approval

This study does not include any human participants.

Research data policy and data availability

Data will be made available on request.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 39 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waghmode, R.B., Gaikwad, N.S., Kim, JR. et al. An NH4F-assisted chemical bath synthesis of NiCo2O4 nanoforms onto stainless-steel substrate as supercapacitor electrode. Ionics (2024). https://doi.org/10.1007/s11581-024-05592-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11581-024-05592-4

Keywords

Navigation