Skip to main content
Log in

Constructing a potential electrocatalyst: highly multi-porous Co3O4 nanostructures to enhance electrocatalytic oxygen evolution reactions

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In order to advance sustainable energy technologies like fuel cells and metal-air batteries, it is crucial to use an electrocatalyst that is very efficient for the process of oxygen evolution. The production of Co3O4 nanostructures led to the creation of a multiporous nanostructure. The research used an approach that utilised a simple, cost-effective, and low-temperature synthesis procedure. The catalytic activity of Co3O4 nanostructures, which have a high degree of porosity and include mesoporous nanostructures, was shown to be substantial. The catalyst has the ability to enhance the highly reactive oxygen reactions at the anode, hence increasing the combined effect of charge transfer at the interface and the porous structure of Co3O4 nanostructures. The results of this study demonstrate that Co3O4 nanostructures exhibit a significant overpotential value of 321 mV at 10 mA/cm2, a Tafel slope of 72 mV Dec−1, and excellent stability when used as electrocatalysts for the oxygen evolution process (OER) in real-world situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aftab U, Solangi MY, Tahira A, Hanan A, Abro MI, Karsy A, Dawi E, Bhatti MA, Alshammari RH, Nafady A, Gradone A, Mazzaro R, Morandi V, Infantes-Molina A, Ibupoto ZH (2023) An advanced PdNPs@MoS 2 nanocomposite for efficient oxygen evolution reaction in alkaline media. RSC Adv 13:32413–32423. https://doi.org/10.1039/D3RA04738E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Anwar S, Khan F, Zhang Y, Djire A (2021) Recent development in electrocatalysts for hydrogen production through water electrolysis. Int J Hydrogen Energy 46:32284–32317. https://doi.org/10.1016/j.ijhydene.2021.06.191

    Article  CAS  Google Scholar 

  3. Attia MEH, Hussein AK, Rashid FL, Ali B, Saggai S, Biswal U, Rout SK, Abdulameer SF, Barik D (2024) Use of electrolysis to produce H 2 from natural and modified water. Energy Technol 12:2300918–2300925. https://doi.org/10.1002/ente.202300918

  4. Bhargava R, Khan S, Ahmad N, Ansari MMN (2018) Investigation of structural, optical and electrical properties of Co3O4 nanoparticles 1:030034–030038

  5. Buttler A, Spliethoff H (2018) Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: a review. Renew Sustain Energy Rev 82:2440–2454. https://doi.org/10.1016/j.rser.2017.09.003

    Article  CAS  Google Scholar 

  6. Chen F-Y, Qiu C, Wu Z-Y, Wi T-U, Finfrock YZ, Wang H (2024) Ruthenium-lead oxide for acidic oxygen evolution reaction in proton exchange membrane water electrolysis. Nano Res. https://doi.org/10.1007/s12274-024-6460-5

    Article  Google Scholar 

  7. Chen T-J, Yeh T-K, Wang M-Y (2024) Preparation of ruthenium oxide catalyst for oxygen evolution reaction in HT-PAWE by pulsed electrodeposition. Int J Hydrogen Energy 52:917–927. https://doi.org/10.1016/j.ijhydene.2023.03.216

    Article  CAS  Google Scholar 

  8. Chi J, Yu H (2018) Water electrolysis based on renewable energy for hydrogen production. Chin J Catal 39:390–394. https://doi.org/10.1016/S1872-2067(17)62949-8

    Article  CAS  Google Scholar 

  9. Dincer I, Acar C (2015) Review and evaluation of hydrogen production methods for better sustainability. Int J Hydrogen Energy 40:11094–11111. https://doi.org/10.1016/j.ijhydene.2014.12.035

    Article  CAS  Google Scholar 

  10. Fabbri E, Schmidt TJ (2018) Oxygen evolution reaction—the enigma in water electrolysis. ACS Catal 8:9765–9774. https://doi.org/10.1021/acscatal.8b02712

    Article  CAS  Google Scholar 

  11. Hadjiev VG, Iliev MN, Vergilov IV (1988) The Raman spectra of Co3O4. J Phys C: Solid State Phys 21:L199–L201. https://doi.org/10.1088/0022-3719/21/7/007

    Article  Google Scholar 

  12. Hanan A, Shu D, Aftab U, Cao D, Laghari AJ, Solangi MY, Abro MI, Nafady A, Vigolo B, Tahira A, Ibupoto ZH (2022) Co2FeO4@rGO composite: towards trifunctional water splitting in alkaline media. Int J Hydrogen Energy 47:33919–33937. https://doi.org/10.1016/j.ijhydene.2022.07.269

    Article  CAS  Google Scholar 

  13. Hughes JP, Clipsham J, Chavushoglu H, Rowley-Neale SJ, Banks CE (2021) Polymer electrolyte electrolysis: a review of the activity and stability of non-precious metal hydrogen evolution reaction and oxygen evolution reaction catalysts. Renew Sustain Energy Rev 139:110709. https://doi.org/10.1016/j.rser.2021.110709

    Article  CAS  Google Scholar 

  14. Karmakar A, Mahendiran D, Madhu R, Murugan P, Kundu S (2023) Bypassing the scaling relationship with spin selectivity: construction of Lewis base-functionalized heterostructural 2D nanosheets for enhanced oxygen evolution reaction. J Mater Chem A Mater 11:16349–16362. https://doi.org/10.1039/D3TA02815A

    Article  CAS  Google Scholar 

  15. Kikuchi K, Ioka A, Oku T, Tanaka Y, Saihara Y, Ogumi Z (2009) Concentration determination of oxygen nanobubbles in electrolyzed water. J Colloid Interface Sci 329:306–309. https://doi.org/10.1016/j.jcis.2008.10.009

    Article  CAS  PubMed  Google Scholar 

  16. Li Y, Li F-M, Meng X-Y, Li S-N, Zeng J-H, Chen Y (2018) Ultrathin Co3O4 nanomeshes for the oxygen evolution reaction. ACS Catal 8:1913–1920. https://doi.org/10.1021/acscatal.7b03949

    Article  CAS  Google Scholar 

  17. Madhu R, Jayan R, Karmakar A, Selvasundarasekar SS, Kumaravel S, Bera K, Nagappan S, Dhandapani NH, Islam MM, Kundu S (2022) Rationally constructing chalcogenide–hydroxide heterostructures with amendment of electronic structure for overall water-splitting reaction. ACS Sustain Chem Eng 10:11299–11309. https://doi.org/10.1021/acssuschemeng.2c03292

    Article  CAS  Google Scholar 

  18. Madhu R, Karmakar A, Arunachalam P, Muthukumar J, Gudlur P, Kundu S (2023) Regulating the selective adsorption of OH* over the equatorial position of Co 3 O 4 via doping of Ru ions for efficient water oxidation reaction. J Mater Chem A Mater 11:21767–21779. https://doi.org/10.1039/D3TA03822J

    Article  CAS  Google Scholar 

  19. Madhu R, Karmakar A, Kumaravel S, Sankar SS, Bera K, Nagappan S, Dhandapani HN, Kundu S (2022) Revealing the pH-universal electrocatalytic activity of Co-doped RuO 2 toward the water oxidation reaction. ACS Appl Mater Interfaces 14:1077–1091. https://doi.org/10.1021/acsami.1c20752

    Article  CAS  PubMed  Google Scholar 

  20. Madhu R, Karmakar A, Kundu S (2023) Morphology-dependent electrocatalytic behavior of cobalt chromite toward the oxygen evolution reaction in acidic and alkaline medium. Inorg Chem 62:2726–2737. https://doi.org/10.1021/acs.inorgchem.2c03840

    Article  CAS  PubMed  Google Scholar 

  21. Meng W, Sun S, Xie D, Dai S, Shao W, Zhang Q, Qin C, Liang G, Li X (2024) Engineering defective Co3O4 containing both metal doping and vacancy in octahedral cobalt site as high performance catalyst for methane oxidation. Molecular Catalysis 553:113768. https://doi.org/10.1016/j.mcat.2023.113768

    Article  CAS  Google Scholar 

  22. Nagappan S, Karmakar A, Madhu R, Dhandapani HN, Singha Roy S, Kundu S (2023) Tuning the active sites and optimizing the d -spacing value in CoFe-LDH by ex situ intercalation of guest anions: an innovative electrocatalyst for overall water splitting reaction. Catal Sci Technol 13:6377–6391. https://doi.org/10.1039/D3CY00859B

    Article  CAS  Google Scholar 

  23. Pal J, Chauhan P (2010) Study of physical properties of cobalt oxide (Co3O4) nanocrystals. Mater Charact 61:575–579. https://doi.org/10.1016/j.matchar.2010.02.017

    Article  CAS  Google Scholar 

  24. Plevová M, Hnát J, Bouzek K (2021) Electrocatalysts for the oxygen evolution reaction in alkaline and neutral media A comparative review. J Power Sources 507:230072. https://doi.org/10.1016/j.jpowsour.2021.230072

    Article  CAS  Google Scholar 

  25. Qin R, Chen G, Feng X, Weng J, Han Y (2024) Ru/Ir-based electrocatalysts for oxygen evolution reaction in acidic conditions: from mechanisms, optimizations to challenges. Advanced Science. https://doi.org/10.1002/advs.202309364

    Article  PubMed  PubMed Central  Google Scholar 

  26. Rabee AIM, Gaid CBA, Mekhemer GAH, Zaki MI (2022) Combined TPR, XRD, and FTIR studies on the reduction behavior of Co3O4. Mater Chem Phys 289:126367. https://doi.org/10.1016/j.matchemphys.2022.126367

    Article  CAS  Google Scholar 

  27. Samo AH, Aftab U, Cao DX, Ahmed M, Lakhan MN, Kumar V, Asif A, Ali A (2022) Schematic synthesis of cobalt-oxide (Co3O4) supported cobalt-sulfide (CoS) composite for oxygen evolution reaction. Dig J Nanomater Biostruct 17:109–120. https://doi.org/10.15251/DJNB.2022.171.109

    Article  Google Scholar 

  28. Saraf M, Rajak R, Mobin SM (2019) MOF derived high surface area enabled porous Co3O4 nanoparticles for supercapacitors. ChemistrySelect 4:8142–8149. https://doi.org/10.1002/slct.201901652

    Article  CAS  Google Scholar 

  29. Selvasundarasekar SS, Bijoy TK, Kumaravel S, Karmakar A, Madhu R, Bera K, Nagappan S, Dhandapani HN, Lee S-C, Kundu S (2022) Constructing electrospun spinel NiFe 2 O 4 nanofibers decorated with palladium ions as nanosheets heterostructure: boosting electrocatalytic activity of HER in alkaline water electrolysis. Nanoscale 14:10360–10374. https://doi.org/10.1039/D2NR02203F

    Article  CAS  PubMed  Google Scholar 

  30. Solangi MY, Aftab U, Tahira A, Hanan A, Montecchi M, Pasquali L, Tonezzer M, Mazzaro R, Morandi V, Laghari AJ, Nafady A, Abro MI, Emo M, Vigolo B, Dawi E, Mustafa E, Ibupoto ZH (2023) In-situ growth of nonstoichiometric CrO0.87 and Co3O4 hybrid system for the enhanced electrocatalytic water splitting in alkaline media. Int J Hydrogen Energy 48:36439–36451. https://doi.org/10.1016/j.ijhydene.2023.06.059

    Article  CAS  Google Scholar 

  31. Suen N-T, Hung S-F, Quan Q, Zhang N, Xu Y-J, Chen HM (2017) Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem Soc Rev 46:337–365. https://doi.org/10.1039/C6CS00328A

    Article  CAS  PubMed  Google Scholar 

  32. Wang M, Wang Z, Gong X, Guo Z (2014) The intensification technologies to water electrolysis for hydrogen production – a review. Renew Sustain Energy Rev 29:573–588. https://doi.org/10.1016/j.rser.2013.08.090

    Article  CAS  Google Scholar 

  33. Wu K, Shen D, Meng Q, Wang J (2018) Octahedral Co3O4 particles with high electrochemical surface area as electrocatalyst for water splitting. Electrochim Acta 288:82–90. https://doi.org/10.1016/j.electacta.2018.08.067

    Article  CAS  Google Scholar 

  34. Xu L, Jiang Q, Xiao Z, Li X, Huo J, Wang S, Dai L (2016) Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew Chem 128:5363–5367. https://doi.org/10.1002/ange.201600687

    Article  Google Scholar 

  35. Yu M, Budiyanto E, Tüysüz H (2022) Principles of water electrolysis and recent progress in cobalt-, nickel-, and iron-based oxides for the oxygen evolution reaction. Angewandte Chemie Int Ed 61(1):2–26. https://doi.org/10.1002/anie.202103824

    Article  CAS  Google Scholar 

  36. Zhang G, Li J (2018) Tailoring oxygen vacancy on Co3O4 nanosheets with high surface area for oxygen evolution reaction. Chin J Chem Phys 31:517–522. https://doi.org/10.1063/1674-0068/31/cjcp1805127

    Article  CAS  Google Scholar 

  37. Zhang G, Yang J, Wang H, Chen H, Yang J, Pan F (2017) Co3O4−δ quantum dots as a highly efficient oxygen evolution reaction catalyst for water splitting. ACS Appl Mater Interfaces 9:16159–16167. https://doi.org/10.1021/acsami.7b01591

    Article  CAS  PubMed  Google Scholar 

  38. Zhao D, Yu G-Q, Xu J, Wu Q, Zhou W, Ning S, Li X-B, Li L, Wang N (2024) Preparing iron oxide clusters surface modified Co3O4 nanoboxes by chemical vapor deposition as an efficient electrocatalyst for oxygen evolution reaction. Energy Storage Mater 66:103236. https://doi.org/10.1016/j.ensm.2024.103236

    Article  Google Scholar 

Download references

Acknowledgements

AM acknowledges the Tatung University and S K Porwal College, Nagpur, India. The authors are also grateful to the instrument facility of SAIF Kochin, Kerala, India. The authors would like to thank the Researchers Supporting Project number (RSPD2024R1041), King Saud University, Riyadh, Saudi Arabia, for the financial support.

Funding

This project was financially supported by the Researchers Supporting Project (RSPD2024R1041), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

Dr. Aniruddha Mondal implemented the Original draft preparation/Data curation/Investigation/Validation/Formal analysis Dr. S A T Shanmugapriya and Aniruddha Mondal wrote the initial manuscript. Dr Amanullah Fatehmulla, Pranali Hadole, and Dr. Aniruddha Mondal have analysed the XPS and electrochemical experiment and analysis Dr. Anand Prakash Singh, Ratiram Gomaji Chaudhary, Dr. Sudip Mondal, Dr. Amanullah Fatehmulla, and Pranali Hadole has done Visualization/Reviewing and Editing

Corresponding author

Correspondence to Aniruddha Mondal.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 338 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shanmugapriya, S.A.T., Singh, A.P., Chaudhary, R.G. et al. Constructing a potential electrocatalyst: highly multi-porous Co3O4 nanostructures to enhance electrocatalytic oxygen evolution reactions. Ionics (2024). https://doi.org/10.1007/s11581-024-05576-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11581-024-05576-4

Keywords

Navigation