Skip to main content
Log in

Synthesis of monodisperse hollow carbon spheres and their electrochemical performance as anodes in potassium-ion batteries

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

To explore high-performance carbon anodes for potassium-ion batteries, monodisperse novel hollow carbon spheres (MHCSs) were synthesized via a combination of hydrothermal reactions and high-temperature pyrolysis using 2,4-dihydroxybenzoic acid and hexamethylenetetramine as the main raw materials. The synthesized MHCSs range from 140 to 260 nm in size with a large specific area of 466 m2 g-1. The potassium storage performance and dynamics of MHCSs in KN(SO2F)2 (KFSI) and KPF6 electrolytes were systematically investigated. In the KFSI electrolyte, the MHCSs have a higher reversible capacity, better cycling stability, better rate performance, and faster electrode process dynamics than in the KPF6 electrolyte. The excellent electrochemical performance of MHCSs in the KFSI electrolyte is attributed to the hollow structure of the material and the formation of a KF-rich and uniform solid-electrolyte interface film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated and analyzed during this study are included in this published article and its supplementary information files.

References

  1. Zhang W, Liu Y, Guo Z (2019) Approaching high-performance potassium-ion batteries via advanced design strategies and engineering. Sci Adv 5(5):eaav7412 https://doi.org/10.1126/sciadv.aav7412

  2. Cheng G, Zhang W, Wang W, Wang H, Wang Y, Shi J, Chen J, Liu S, Huang M, Mitlin D (2022) Sulfur and nitrogen codoped cyanoethyl cellulose-derived carbon with superior gravimetric and volumetric capacity for potassium ion storage. Carbon Energy 4(5):986–1001. https://doi.org/10.1002/cey2.233

    Article  CAS  Google Scholar 

  3. Wu Y, Wu P, Tang Y, Fu R, Cui Y, Chen J, Kübel C, Xu F (2023) Deciphering unexplored reversible potassium storage and small volume change in a CaV4O9 anode with in situ transmission electron microscopy. Adv Funct Mater: 2314344. https://doi.org/10.1002/adfm.202314344

  4. Feng W, Wei X, Cao F, Li Y, Zhang X, Li Y, Liu W, Han J, Kong D, Zhi L (2024) Defective MoSSe with local-expanded structure for high-rate potassium ion battery. Energy Stor Mater 65:103186. https://doi.org/10.1016/j.ensm.2024.103186

    Article  Google Scholar 

  5. Guan S, Zhou J, Sun S, Peng Q, Guo X, Liu B, Zhou X, Tang Y. (2024). Nonmetallic Se/N Co‐doped amorphous carbon anode collaborates to realize ultra‐high capacity and fast potassium storage for potassium dual‐ion batteries. Adv Funct Mater: 2314890. https://doi.org/10.1002/adfm.202314890

  6. Cai Y, Liu W, Chang F, Jin S, Yang X, Zhang C, Bai L, Masese T, Li Z, Huang Z (2023) Entropy-stabilized layered K0.6Ni0.05Fe0.05Mg0.05Ti0.05Mn0.725O2 as a high-rate and stable cathode for potassium-ion batteries. ACS Appl Mater Interfaces 15(41):48277-48286 https://doi.org/10.1021/acsami.3c11059

  7. Dong S, Li Z, Xing Z, Wu X, Ji X, Zhang X (2018) Novel potassium-ion hybrid capacitor based on an anode of K2Ti6O13 microscaffolds. ACS Appl Mater Interfaces 10(18):15542–15547. https://doi.org/10.1021/acsami.7b15314

    Article  CAS  PubMed  Google Scholar 

  8. Sabaghi D, Polčák J, Yang H, Li X, Morag A, Li D, Nia AS, Khosravi HS, Šikola T, Feng X, Yu M (2024) Multifunctional molecule-grafted V2C MXene as high-kinetics potassium-ion-intercalation anodes for dual-ion energy storage devices. Adv Energy Mater 14(3):202302961. https://doi.org/10.1002/aenm.202302961

    Article  CAS  Google Scholar 

  9. Ming J, Cao Z, Wahyudi W, Li M, Kumar P, Wu Y, Hwang J, Hedhili MN, Cavallo L, Sun Y, Li L (2018) New insights on graphite anode stability in rechargeable batteries: Li Ion coordination structures prevail over solid electrolyte interphases. ACS Energy Lett 3(2):335–340. https://doi.org/10.1021/acsenergylett.7b01177

    Article  CAS  Google Scholar 

  10. Liu G, Cao Z, Zhou L, Zhang J, Sun Q, Hwang JY, Cavallo L, Wang L, Sun YK, Ming J (2020) Additives engineered nonflammable electrolyte for safer potassium ion batteries. Adv Funct Mater 30(43):2001934. https://doi.org/10.1002/adfm.202001934

    Article  CAS  Google Scholar 

  11. Zhang J, Cao Z, Zhou L, Liu G, Park G, Cavallo L, Wang L, Alshareef HN, Sun Y, Ming J (2020) Model-based design of graphite-compatible electrolytes in potassium-ion batteries. ACS Energy Lett 5(8):2651–2661. https://doi.org/10.1021/acsenergylett.0c01401

    Article  CAS  Google Scholar 

  12. Xiao B, Zhang H, Sun Z, Li M, Fan Y, Lin H, Liu H, Jiang B, Shen Y, Wang M, Li M, Zhang Q (2023) Achieving high-capacity and long-life K+ storage enabled by constructing yolk-shell Sb2S3@N, S-doped carbon nanorod anodes. J Energy Chem 76:547–556. https://doi.org/10.1016/j.jechem.2022.09.050

    Article  CAS  Google Scholar 

  13. Xiao B, Sun Z, Zhang H, Wu Y, Li J, Cui J, Han J, Li M, Zheng H, Chen J, Cai M, Ke C, Wang X, Liu H, Jiang Z, Zhang S, Dong-Liang P, Guo Z, Zhang Q (2023) Enabling highly-efficient and stable potassium-ion storage by exposing atomic-dispersed super-coordinated antimony O2Sb1N4 sites on N-doped carbon nanosheets. Energy Environ Sci 16(5):2153–2166. https://doi.org/10.1039/d2ee03970b

    Article  CAS  Google Scholar 

  14. Wu J, Yuan B, Gu Y, Zhang Y, Yan Z, Zhang L, Yang X, Zhang H, Bai L, Li Z, Huang Z (2023) Multifunctional layered bismuth oxychloride/amorphous antimony oxide hetero-hybrids as superior photocatalyst and potassium ion storage materials. Appl Catal B: Environ 321:122032. https://doi.org/10.1016/j.apcatb.2022.122032

    Article  CAS  Google Scholar 

  15. Li Z, Wen J, Cai Y, Lv F, Zeng X, Liu Q, Masese T, Zhang C, Yang X, Ma Y, Zhang H, Huang ZD (2023) Hydrated Bi-Ti-bimetal ethylene glycol: a new high-capacity and stable anode material for potassium-ion batteries. Adv Funct Mater 33(22). https://doi.org/10.1002/adfm.202300582

  16. Liang S, Shi H, Yu Z, Liu Q, Cai K, Wang J, Xu Z (2021) Uncovering the design principle of conversion-based anode for potassium ion batteries via dimension engineering. Energy Stor Mater 34:536–544. https://doi.org/10.1016/j.ensm.2020.10.017

    Article  Google Scholar 

  17. Sheng J, Wang T, Tan J, Lv W, Qiu L, Zhang Q, Zhou G, Cheng H (2020) Intercalation-induced conversion reactions give high-capacity potassium storage. ACS Nano 14(10):14026–14035. https://doi.org/10.1021/acsnano.0c06606

    Article  CAS  PubMed  Google Scholar 

  18. Zhou E, Luo X, Jin H, Wang C, Lu Z, Xie Y, Zhou S, Chen Y, He Z, Ma R, Zhang W, Xie H, Jiao S, Lin Y, Bin D, Huang R, Wu X, Kong X, Ji H (2024) Breaking low-strain and deep-potassiation trade-off in alloy anodes via bonding modulation for high-performance K-Ion batteries. J Am Chem Soc 146(7):4752–4761. https://doi.org/10.1021/jacs.3c12654

    Article  CAS  PubMed  Google Scholar 

  19. Zhang Z, Jia B, Liu L, Zhao Y, Wu H, Qin M, Han K, Wang WA, Xi K, Zhang L, Qi G, Qu X, Kumar RV (2019) Hollow multihole carbon bowls: a stress–release structure design for high-stability and high-volumetric-capacity potassium-ion batteries. ACS Nano 13(10):11363–11371. https://doi.org/10.1021/acsnano.9b04728

    Article  CAS  PubMed  Google Scholar 

  20. Yan F, Yang Q, Li M, Chen G, Zhang W, Chen Y (2022) Facile synthesis of hollow stalagmite-like N, S-doped C and its capacity attenuation mechanism as anodes in K-ion batteries. Carbon 200:56–62. https://doi.org/10.1016/j.carbon.2022.08.059

    Article  CAS  Google Scholar 

  21. Ma Y, Liu W, Liu W, Zhang G, Wang Y, Wang H, Chen W, Huang M, Wang X (2024) Coconut-solid-waste-derived hard-carbon anode materials for fast potassium ion storage. Coatings 14(2):208. https://doi.org/10.3390/coatings14020208

    Article  CAS  Google Scholar 

  22. Yao J, Liu C, Zhu Y, Sun Y, Feng D, Li H, Yang Y, Ma T, Qiu J (2024) Needle coke anodes for potassium-ion batteries: Storage mechanism and interfacial evolution in soft carbon. Carbon 221:118937. https://doi.org/10.1016/j.carbon.2024.118937

    Article  CAS  Google Scholar 

  23. Wu Z, Zou J, Shabanian S, Golovin K, Liu J (2022) The roles of electrolyte chemistry in hard carbon anode for potassium-ion batteries. Chem Eng J 427:130972. https://doi.org/10.1016/j.cej.2021.130972

    Article  CAS  Google Scholar 

  24. Li J, Li Y, Ma X, Zhang K, Hu J, Yang C, Liu M (2020) A honeycomb-like nitrogen-doped carbon as high-performance anode for potassium-ion batteries. Chem Eng J 384:123328. https://doi.org/10.1016/j.cej.2019.123328

    Article  CAS  Google Scholar 

  25. Liu W, Shi T, Liu F, Yang C, Qiao F, Han K, Han C, Meng J, Wang X (2024) Short-chain sulfur confined into nitrogen-doped hollow carbon nanospheres for high-capacity potassium storage. Nanomaterials 14(6):550. https://doi.org/10.3390/nano14060550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ma X, Xiao N, Xiao J, Song X, Guo H, Wang Y, Zhao S, Zhong Y, Qiu J (2021) Nitrogen and phosphorus dual-doped porous carbons for high-rate potassium ion batteries. Carbon 179:33–41. https://doi.org/10.1016/j.carbon.2021.03.067

    Article  CAS  Google Scholar 

  27. Wang G, Xiong X, Xie D, Lin Z, Zheng J, Zheng F, Li Y, Liu Y, Yang C, Liu M (2018) Chemically activated hollow carbon nanospheres as a high-performance anode material for potassium ion batteries. J Mater Chem A 6(47):24317–24323. https://doi.org/10.1039/C8TA09751H

    Article  CAS  Google Scholar 

  28. Chong S, Yuan L, Li T, Shu C, Qiao S, Dong S, Liu Z, Yang J, Liu HK, Dou SX, Huang W (2022) Nitrogen and oxygen co-doped porous hard carbon nanospheres with core-shell architecture as anode materials for superior potassium-ion storage. Small 18(8):2104296. https://doi.org/10.1002/smll.202104296

    Article  CAS  Google Scholar 

  29. Cheng N, Zhou W, Liu J, Liu Z, Lu B (2022) Reversible oxygen-rich functional groups grafted 3D Honeycomb-like carbon anode for super-long potassium ion batteries. Nano-Micro Lett 14(1):146. https://doi.org/10.1007/s40820-022-00892-8

    Article  CAS  Google Scholar 

  30. Wang H, Yu D, Wang X, Niu Z, Chen M, Cheng L, Zhou W, Guo L (2019) Electrolyte chemistry enables simultaneous stabilization of potassium metal and alloying anode for potassium-ion batteries. Angew Chem Int Ed 58(46):16451–16455. https://doi.org/10.1002/anie.201908607

    Article  CAS  Google Scholar 

  31. Xu J, Fan C, Ou M, Sun S, Xu Y, Liu Y, Wang X, Li Q, Fang C, Han J (2022) Correlation between potassium-ion storage mechanism and local structural evolution in hard carbon materials. Chem Mater 34(9):4202–4211. https://doi.org/10.1021/acs.chemmater.2c00646

    Article  CAS  Google Scholar 

  32. Fan L, Chen S, Ma R, Wang J, Wang L, Zhang Q, Zhang E, Liu Z, Lu B (2018) Ultrastable potassium storage performance realized by highly effective solid electrolyte interphase layer. Small 14(30):201801806. https://doi.org/10.1002/smll.201801806

    Article  CAS  Google Scholar 

  33. Huang Y, Ding S, Xu S, Ma Z, Wang J, Yuan X (2022) Highly effective solid electrolyte interface on SnO2@C enabling stable potassium storage performance. Chem Eng J 446:137265. https://doi.org/10.1016/j.cej.2022.137265

    Article  CAS  Google Scholar 

  34. Zhang H, Wang H, Li W, Wei Y, Wen B, Zhai D, Kang F (2024) Enabling high‐performance potassium-ion batteries by manipulating interfacial chemistry. Adv Funct Mater: 2312368. https://doi.org/10.1002/adfm.202312368

  35. Zhang J, Cao Z, Zhou L, Park G, Cavallo L, Wang L, Alshareef HN, Sun Y, Ming J (2020) Model-Based design of stable electrolytes for potassium ion batteries. ACS Energy Lett. 5(10):3124–3131. https://doi.org/10.1021/acsenergylett.0c01634

    Article  CAS  Google Scholar 

Download references

Funding

This research was financially supported by the Open Program of Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province (No. CSPC202106) and the Fundamental Research Funds of China West Normal University (No. CXTD2020-1).

Author information

Authors and Affiliations

Authors

Contributions

Writing-original draft, investigation, material preparation and data analysis: Zhanwei Zhang; supervision, writing-review and editing, funding acquisition and conceptualization: Mingqi Li.

Corresponding author

Correspondence to Mingqi Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 374 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Li, M. Synthesis of monodisperse hollow carbon spheres and their electrochemical performance as anodes in potassium-ion batteries. Ionics (2024). https://doi.org/10.1007/s11581-024-05574-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11581-024-05574-6

Keywords

Navigation