Skip to main content
Log in

LiFe0.95Mn0.05PO4@C film grown on multilayer graphene as a cathode material for lithium-ion batteries

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Integrating nanostructured LiFePO4 with carbon substrates is a feasible way to obtain high electrochemical performance for lithium-ion batteries (LIBs). The distribution uniformity of LiFePO4 and contact surface area between LiFePO4 and carbon substrates are crucial for the high electrode performance. In this work, LiFePO4 thin film was synthesized on the flat surface of mechanically exfoliated multilayer graphene (MLG) via chemical deposition of Fe2O3 thin film on MLG and conversion to LiFePO4 by solid phase reaction. To enhance the electrochemical performance, carbon coating and Mn doping were carried out to modify the LiFePO4 thin film. LiFe0.95Mn0.05PO4@C film on MLG (MLG/LiFe0.95Mn0.05PO4@C) exhibits high electrochemical performance. Based on the total mass of the composite, specific discharge capacity of 62.5 mAh g−1 is delivered at a high current density of 10 C. Specific discharge capacity of 126.8 mAh g−1 is maintained after 100 cycles at 0.2 C, exhibiting a capacity retention of 97.5%. This method is suitable for large-scale synthesis of carbon-based LiFePO4 composites at low cost.

Graphical Abstract

LiFe0.95Mn0.05PO4@C film was successfully synthesized on the flat surface of mechanically exfoliated multilayer graphene (MLG). The “plane-to-plane” structure endows the composite high electrochemical performance as cathode of lithium ion battery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Chang L, Yang W, Cai K, Bi X, Wei A, Yang R, Liu J (2023) A review on nickel-rich nickel-cobalt-manganese ternary cathode materials LiNi0.6Co0.2Mn0.2O2 for lithium-ion batteries: performance enhancement by modification. Mater Horiz 10:4776–4826

    Article  CAS  PubMed  Google Scholar 

  2. Yang W, Chang L, Luo S, Bi X, Cao S, Wei A, Liu J, Zhang F (2022) Study on annealing treatment of spinel LiNi0.5Mn1.5O4 as cathode materials for high-voltage lithium-ion batteries. Int J Energy Res 46(13):18495–18510

    Article  CAS  Google Scholar 

  3. Wei A, Chang L, Luo S, Cao S, Bi X, Yang W, Liu J, Zhang F (2022) Preparation of LiNi0.5Mn1.5O4 cathode materials by non-constant temperature calcination and research on its performance. Ionics 28(2):555–565

    Article  CAS  Google Scholar 

  4. Bi X, Chang L, Luo S, Cao S, Wei A, Yang W, Liu J, Zhang F (2022) The recent progress of Li2FeSiO4 as a poly-anionic cathode material for lithium-ion batteries. Int J Energy Res 46(5):5373–5398

    Article  CAS  Google Scholar 

  5. Chang L, Bi X, Luo S, Yang W, Wei A, Yang R, Liu J (2023) Insight into the high-efficiency separation of Si element from low-grade laterite nickel ore and the preparation of Li2FeSiO4/C cathode materials for lithium-ion batteries. J Alloy Compd 937:168357

    Article  CAS  Google Scholar 

  6. Xu J, Cai X, Cai S, Shao Y, Hu C, Lu S, Ding S (2023) High-energy lithium-ion batteries: recent progress and a promising future in applications. Energy Environ Mater 6(5):e12450

    Article  CAS  Google Scholar 

  7. Xin YM, Xu HY, Ruan JH, Li DC, Wang AG, Sun DS (2021) A review on application of LiFePO4 based composites as electrode materials for lithium ion batteries. Int J Electrochem Sci 16(6):210655

    Article  CAS  Google Scholar 

  8. Ramasubramanian B, Sundarrajan S, Chellappan V, Reddy MV, Ramakrishna S, Zaghib K (2022) Recent development in carbon-LiFePO4 cathodes for lithium-ion batteries: a mini review. Batteries 8(10):133

    Article  CAS  Google Scholar 

  9. Zhu S, Huang A, Xu Y (2021) Improving methods for better performance of commercial LiFePO4/C batteries. Int J Electrochem Sci 16(5):210564

    Article  CAS  Google Scholar 

  10. Li Y, Wang L, Liang F, Yao Y, Zhang K (2021) Enhancing high rate performance and cyclability of LiFePO4 cathode materials for lithium ion batteries by boron doping. J Alloy Compd 880:160560

    Article  CAS  Google Scholar 

  11. Surthi KK, Kar KK, Janakarajan R (2020) Shape controlled and structurally stabilized Co-doped olivine lithium phosphate cathodes for high voltage conventional, thin and flexible Li-ion batteries. Chem Eng J 399:125858

    Article  CAS  Google Scholar 

  12. Liu J, Hu X, Ran F, Wang K, Dai J, Zhu X (2023) Electrospinning-assisted construction of 3D LiFePO4@ rGO/carbon nanofibers as flexible cathode to boost the rate capabilities of lithium-ion batteries. Ceram Int 49(1):1401–1408

    Article  CAS  Google Scholar 

  13. Wang X, Feng Z, Hou X, Liu L, He M, He X, Wen Z (2020) Fluorine doped carbon coating of LiFePO4 as a cathode material for lithium-ion batteries. Chem Eng J 379:122371

    Article  CAS  Google Scholar 

  14. Huang CY, Kuo TR, Yougbare S, Lin LY (2022) Design of LiFePO4 and porous carbon composites with excellent high-rate charging performance for Lithium-Ion secondary battery. J Colloid Interface Sci 607:1457–1465

    Article  CAS  PubMed  Google Scholar 

  15. Zhang H, Zou Z, Zhang S, Liu J, Zhong S (2020) A review of the doping modification of LiFePO4 as a cathode material for lithium ion batteries. Int J Electrochem Sci 15(12):12041–12067

    Article  CAS  Google Scholar 

  16. Cui Z, Guo X, Ren J, Xue H, Tang F, La P, Lu X (2021) Enhanced electrochemical performance and storage mechanism of LiFePO4 doped by Co, Mn and S elements for lithium-ion batteries. Electrochim Acta 388:138592

    Article  CAS  Google Scholar 

  17. Zhu H, Miao C, Guo R, Liu Y, Wang X (2021) A simple and low-cost synthesis strategy of LiFePO4 nanoparticles as cathode materials for lithium ion batteries. Int J Electrochem Sci 16(3):210331

    Article  CAS  Google Scholar 

  18. Li Z, Yang J, Guang T, Fan B, Zhu K, Wang X (2021) Controlled hydrothermal/solvothermal synthesis of high-performance LiFePO4 for Li-Ion batteries. Small Methods 5(6):2100193

    Article  CAS  Google Scholar 

  19. Geng J, Zhang S, Hu X, Ling W, Peng X, Zhong S, Zou Z (2022) A review of graphene-decorated LiFePO4 cathode materials for lithium-ion batteries. Ionics 28(11):4899–4922

    Article  CAS  Google Scholar 

  20. Kuk Y, Hwang J, Nam D, Kim J (2020) Facile synthesis of high-performance LiFePO4-reduced graphene oxide composites using ball milling. Ionics 26(6):2803–2812

    Article  CAS  Google Scholar 

  21. Yu S, Guo B, Zeng T, Qu H, Yang J, Bai J (2022) Graphene-based lithium-ion battery anode materials manufactured by mechanochemical ball milling process: a review and perspective. Compos Part B: En 246:110232

  22. By Lung-Hao Hu, Feng-Yu Wu, Lin CT, Khlobystov AN, Li LJ (2013) Graphene-modified LiFePO4 cathode for lithium ion battery beyond theoretical capacity. Nat Commun 4(1):1687

    Article  Google Scholar 

  23. Wei W, Lv W, Wu MB, Su FY, He YB, Li B, Yang QH (2013) The effect of graphene wrapping on the performance of LiFePO4 for a lithium ion battery. Carbon 57:530–533

    Article  CAS  Google Scholar 

  24. Fathollahi F, Javanbakht M, Omidvar H, Ghaemi M (2015) Improved electrochemical properties of LiFePO4/graphene cathode nanocomposite prepared by one-step hydrothermal method. J Alloy Compd 627:146–152

    Article  CAS  Google Scholar 

  25. Zhang Y, Wang W, Li P, Fu Y, Ma X (2012) A simple solvothermal route to synthesize graphene-modified LiFePO4 cathode for high power lithium ion batteries. J Power Sources 210:47–53

    Article  CAS  Google Scholar 

  26. Ren X, Li Y, He Z, Xi X, Shen X (2023) In-situ growth of LiFePO4 on graphene through controlling phase transition for high-performance Li-ion battery. J Energy Storage 74:109305

    Article  Google Scholar 

  27. Guan Y, Shen J, Wei X, Zhu Q, Zheng X, Zhou S, Xu B (2019) High-rate performance of a three-dimensional LiFePO4/graphene composite as cathode material for Li-ion batteries. Appl Surf Sci 481:1459–1465

    Article  CAS  Google Scholar 

  28. Wang B, Liu A, Al Abdulla W, Wang D, Zhao XS (2015) Desired crystal oriented LiFePO4 nanoplatelets in situ anchored on a graphene cross-linked conductive network for fast lithium storage. Nanoscale 7(19):8819–8828

    Article  CAS  PubMed  Google Scholar 

  29. Long Y, Shu Y, Ma X, Ye M (2014) In-situ synthesizing superior high-rate LiFePO4/C nanorods embedded in graphene matrix. Electrochim Acta 117:105–112

    Article  CAS  Google Scholar 

  30. Tian H, Zhao X, Zhang J, Li M, Lu H (2018) LiFePO4 anchored on pristine graphene for ultrafast lithium battery. ACS Appl Energy Mater 1(7):3497–3504

    Article  CAS  Google Scholar 

  31. Zhou X, Wang F, Zhu Y, Liu Z (2011) Graphene modified LiFePO4 cathode materials for high power lithium ion batteries. J Mater Chem 21(10):3353–3358

    Article  CAS  Google Scholar 

  32. Kim MS, Lee GW, Lee SW, Jeong JH, Mhamane D, Roh KC, Kim KB (2017) Synthesis of LiFePO4/graphene microspheres while avoiding restacking of graphene sheet’s for high-rate lithium-ion batteries. J Ind Eng Chem 52:251–259

    Article  CAS  Google Scholar 

  33. Liu H, Miao C, Meng Y, Xu Q, Zhang X, Tang Z (2014) Effect of graphene nanosheets content on the morphology and electrochemical performance of LiFePO4 particles in lithium ion batteries. Electrochim Acta 135:311–318

    Article  CAS  Google Scholar 

  34. Longoni G, Panda JK, Gagliani L, Brescia R, Manna L, Bonaccorso F, Pellegrini V (2018) In situ LiFePO4 nano-particles grown on few-layer graphene flakes as high-power cathode nanohybrids for lithium-ion batteries. Nano Energy 51:656–667

    Article  CAS  Google Scholar 

  35. Yuan Z, Xue Y, Sun L, Li Y, Mi H, Deng L, Zhang P (2018) LiFePO4/RGO composites synthesized by a solid phase combined with carbothermal reduction method. Ferroelectrics 528(1):1–7

    Article  CAS  Google Scholar 

  36. Xu J, Xu D, Wu J, Wu J, Zhou J, Zhou T, Cheng JP (2022) Ultra-small Fe2O3 nanoparticles anchored on ultrasonically exfoliated multilayer graphene for LIB anode application. Ceram Int 48(21):32524–32531

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Hui Chen: Conceptualization, Methodology, Writing—review and editing. Dongdong Xu: Test, Experimentalize, Data curation. Junming Xu: Investigation, Original draft, Supervision.

Corresponding authors

Correspondence to Hui Chen or Junming Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Xu, D. & Xu, J. LiFe0.95Mn0.05PO4@C film grown on multilayer graphene as a cathode material for lithium-ion batteries. Ionics (2024). https://doi.org/10.1007/s11581-024-05569-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11581-024-05569-3

Keywords

Navigation