Skip to main content
Log in

An investigation of Ni-Co-Mn oxides as anodes for Li+/Na+ ion batteries

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) represent a significant research hotspot in the field of rechargeable batteries. Conversion-type anodes have garnered considerable attention due to their dual lithium and sodium storage activities. Typically, conversion-type anode materials exhibit higher stability in LIB systems compared to SIB systems, attributed to the smaller radius of Li+ ions in comparison to Na+ ions. However, our synthesized microsphere-like (Ni0.3Co0.3Mn0.4)3O4 material demonstrates enhanced stability in SIB systems compared to LIB systems. When employed as a SIB anode, the oxide electrode exhibits a sodiation capacity of 81 mAh g−1 after 500 cycles at 0.2 A g−1, with a retention rate of 65% compared to the capacity at the fifth cycle. Conversely, rapid capacity fading is observed in LIB systems. An explanation for this phenomenon is detailed as follows: sodiation primarily occurs on the material’s surface, given the challenging transport of Na+ ions. As a result, the sample experiences low stress in the SIB system. In contrast, complete lithiation induces substantial stress, leading to numerous cracks in the electrode, thereby compromising electric contact and resulting in a significant specific capacity attenuation in LIB systems. Furthermore, a stable Na+-ion full cell with (Ni0.3Co0.3Mn0.4)3O4 as an anode and Na3V2(PO4)3 as a cathode is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Ren Q, Tang X, He K, Zhang C, Wang W, Guo Y, Zhu Z, Xiao X, Wang S, Lu J, Yuan Y (2023) Long-cycling zinc metal anodes enabled by an in situ constructed ZnO coating layer. Adv Funct Mater 33:2312220

  2. Ren Q, Tang X, Zhao X, Wang Y, Li C, Wang S, Yuan Y (2023) A zincophilic interface coating for the suppression of dendrite growth in zinc anodes. Nano Energy 109:108306

    CAS  Google Scholar 

  3. Yang Y, Zhu Q, Yang J, Liu H, Ren Y, Sui X, Wang P, Sun G, Wang Z (2023) Surface miscible structure modulation of Li-rich cathodes by dual gas surface treatment for super high-temperature electrochemical performance. Adv Funct Mater 33(46):2304979

    CAS  Google Scholar 

  4. Guo Y, Guo C, Huang P, Han Q, Wang F, Zhang H, Liu H, Cao Y, Yao Y, Huang Y (2023) Rejuvenating LiNi0.5Co0.2Mn0.3O2 cathode directly from battery scraps. eScience 3(2):100091

    Google Scholar 

  5. Tang X, Ren Q, Yu F, Wang Z (2023) The improved cycling stability of nanostructured NiCo2O4 anodes for lithium and sodium ion batteries. Ionics 29:3943–3954

    CAS  Google Scholar 

  6. Chen Y, Li F, Guo Z, Song Z, Lin Y, Lin W, Zheng L, Huang Z, Hong Z, Titirici M (2023) Sustainable and scalable fabrication of high-performance hard carbon anode for Na-ion battery. J Power Sources 557:232534

    CAS  Google Scholar 

  7. Tang Z, Zhang R, Wang H, Zhou S, Pan Z, Huang Y, Sun D, Tang Y, Ji X, Amine K, Shao M (2023) Revealing the closed pore formation of waste wood-derived hard carbon for advanced sodium-ion battery. Nat Commun 14:6024

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ren Q, Goh K, Yu F, Wang Z (2021) High-stability Mn-Co-Ni ternary metal oxide microspheres as conversion-type anodes for sodium-ion batteries. Ceram Int 47:17540–17549

    CAS  Google Scholar 

  9. Kim H, Kim D, Kim S, Senthil C, Jung H (2022) Freestanding conversion-type anode via one-pot formation for flexible Li-ion battery. Chem Eng J 427(1):130937

    CAS  Google Scholar 

  10. Ren Q, Zhang Y, Liu C, Han Y, Wang Z, Lin Z (2019) Hollow-sphere iron oxides exhibiting enhanced cycling performance as lithium-ion battery anodes. Chem Commun 55:11638–11641

    CAS  Google Scholar 

  11. Cao L, Zheng M, Wang J, Li S, Xu J, Xiao R, Huang T (2022) Alloy-type Lithium anode prepared by laser microcladding and dealloying for improved cycling/rate performance. ACS Nano 16(10):17220–17228

    CAS  PubMed  Google Scholar 

  12. Guo C, Du K, Tao R, Guo Y, Yao S, Wang J, Wang D, Liang J, Lu S (2023) Inorganic filler enhanced formation of stable inorganic-rich solid electrolyte interphase for high performance lithium metal batteries. Adv Funct Mater 33(29):2301111

    CAS  Google Scholar 

  13. Li Y, Ding F, Shao Y, Wang H, Guo X, Liu C, Sui X, Sun G, Zhou J, Wang Z (2024) Solvation structure and derived interphase tuning for high-Voltage Ni-rich lithium metal batteries with high safety using gem-difluorinated ionic liquid based dual-salt electrolytes. Angew Chem In Ed 63 (8):e202317148

  14. Guo C, Guo Y, Tao R, Liao X, Du K, Zou H, Zhang W, Liang J, Wang D, Sun X, Lu S (2022) Uniform lithiophilic layers in 3D current collectors enable ultrastable solid electrolyte interphase for high-performance lithium metal batteries. Nano Energy 96:107121

    CAS  Google Scholar 

  15. Ren Q, Yu F, Zhang S, Yin B, Wang Z, Ke K (2019) Enhanced electrochemical performance by size-dependent SEI layer. Electrochim Acta 297:1011–1017

    CAS  Google Scholar 

  16. Xu Y, Dong K, Jie Y, Adelhelm P, Chen Y, Xu L, Yu P, Kim J, Kochovski Z, Yu Z (2022) Promoting mechanistic understanding of lithium deposition and solid-electrolyte interphase (SEI) formation using advanced characterization and simulation methods: recent progress, limitations, and future perspectives. Adv Energy Mater 12(19):2200398

    Google Scholar 

  17. Yu J, Zhang H, Yang C, Xie Y, Shen J, Lin Y, Zheng C, Huang H (2022) Bimetallic phosphide AlP/SiP2 composite as an anode material for lithium-ion batteries with long cycle life. Chem Commun 58:2307–2310

    CAS  Google Scholar 

  18. Yin J, Xu Z, Xiao Z, Shao H, Wang J (2022) Photo/electrochemical synthesis of Si@Sn microsphere composites with excellent electrochemical lithium storage. J Alloys Compd 900:163438

    CAS  Google Scholar 

  19. Jiang J, Lu J, Ou Y (2022) Construction of a high-stability and low-nucleation-barrier Cu3Sn alloy Layer on carbon paper for dendrite-free Li metal deposition. ACS Appl Mater Interfaces 14(2):2930–2938

    CAS  PubMed  Google Scholar 

  20. Thirumal V, Mahato N, Yoo K, Kim J (2023) High performance Li-ion battery-type hybrid supercapacitor devices using antimony based composite anode and Ketjen black carbon cathode. J Energy Storage 61:106756

    Google Scholar 

  21. Sing J, Lee S, Zulkifli Kim J, Rai A (2022) Morphological dependent behaviour of CoMoO4 anode: lithium vs. sodium ion batteries. J Alloys Compd 920:165925

    Google Scholar 

  22. Chen H, Zhang S, Wang K, Chen Y, Li H, Zuo X, Liu H (2023) Revealing the influence of conversion-type Co3O4 dimensionality on cyclic and rate performance for lithium storage. J Colloid Interface Sci 647:499–509

    CAS  PubMed  Google Scholar 

  23. Zhou H, Zhao Y, Jin Y, Fan Q, Dong Y, Kuang Q (2023) Bimetallic phosphide Ni2P/CoP@rGO heterostructure for high-performance lithium/sodium-ion batteries. J Power Sources 560:232715

    CAS  Google Scholar 

  24. Song N, Wang Y, Ma C, Zhang Q, Zhao Y, Zhnag F, Li S, Li Y (2022) Cage-like MnSe@PPyC/rGO as superior dual anode materials in Li/Na-ions storage. J Alloys Compd 927:167002

    CAS  Google Scholar 

  25. Wei H, Qin S, Zhang R, Cai G, Tao J, Yan D (2022) Hierarchical porous transition metal oxide nanosheets templated from waste bagasse: general synthesis and Li/Na storage performance. Ceram Int 48:2298–2305

    CAS  Google Scholar 

  26. Sun B, Lou S, Zheng W, Qian Z, Cui C, Zuo P, Du C, Xie J, Wang J, Yin C (2020) Synergistic engineering of defects and architecture in Co3O4@C nanosheets toward Li/Na ion batteries with enhanced pseudocapacitances. Nano Energy 78:105366

    CAS  Google Scholar 

  27. Rao Y, Zhu K, Zhang C, Dang F, Chen J, Liang P, Kong Z, Guo J, Zheng H, Zhang J, Yan K, Liu J, Wang J (2023) Interfacial engineering of MoS2/V2O3@C-rGO composites with pseudocapacitance-enhanced Li/Na-ion storage kinetics. ACS Appl Mater Interfaces 15(48):55734–55744

    CAS  PubMed  Google Scholar 

  28. Gao T, Song Y, Xie L, Zhao X, Liu Z (2023) Synthesis of Fe3Se4/CoFe/NSeC@NSeC for fast and longevous energy storage. J Alloys Compd 941:168911

    CAS  Google Scholar 

  29. Zhan G, Liao W, Hu Q, Wu Q, Wu X, Huang X (2023) Rational engineering of p-n heterogeneous ZnS/SnO2 quantum dots with east ion kinetics for superior Li/Na-ion battery. Small 19(43):2300534

    CAS  Google Scholar 

  30. Daali A, Zhou X, Zhao C, Hwang I, Yang Z, Amine R, Sun C, Otieno W, Xu G, Amine K (2023) In situ microscopy and spectroscopy characterization of microsized Sn anode for sodium-ion batteries. Nano Energy 115:108753

    CAS  Google Scholar 

  31. Guo Y, Liao X, Huang P, Luo P, Su Y, Hong X, Han Q, Yu R, Cao Y, Chen S (2021) High reversibility of layered oxide cathode enabled by direct re-generation. Energy Storage Mater 43:348–357

    Google Scholar 

  32. Fu R, Pan J, Wang M, Min H, Dong H, Cai R, Sun Z, Xiong Y, Cui F, Lei S, Chen S, Chen J, Sun L, Zhang Q (2023) In situ atomic-scale deciphering of multiple dynamic phase transformations and reversible sodium storage in ternary metal sulfide anode. ACS Nano 17(13):12483–12498

    CAS  PubMed  Google Scholar 

  33. You R, Ou Y, Qi R, Yu J, Wang F, Jiang Y, Zou S, Han Z, Yuan W, Yang H, Zhang Z, Wang Y (2023) Revealing temperature-dependent oxidation dynamics of Ni nanoparticles via ambient pressure transmission electron microscopy. Nano Lett 23(16):7260–7266

    CAS  PubMed  Google Scholar 

  34. Li J, Xia Z, Wang X, Feng C, Zhang Q, Chen X, Yang Y, Wang S, Jin H (2023) Distinguished roles of nitrogen-doped sp2 and sp3 hybridized carbon on extraordinary supercapacitance in acidic aqueous electrolyte. Adv Mater 35:2310422

  35. Ren Q, Yu F, Zhang C, Wang M, Liu C, Wang Z (2020) High-performance ternary metal oxide anodes for lithium storage. Ceram Int 46:28914–28921

    CAS  Google Scholar 

  36. Ji Y, Song J, Li Y, Lu X, Tian Q, Li Y, Chen J (2022) High lithium storage of Co3O4 enabled by integrating hollow and porous carbon scaffolds. Ceram Int 48:15252–15260

    CAS  Google Scholar 

  37. Suo G, Cheng Y, Zhang J, Ahmed S, Hou X, Yang Y, Ye X, Li Z (2022) Interconnected MnCO3 nanostructures anchored on carbon fibers with enhanced potassium storage performance. Mater Today Chem 25:100904

    CAS  Google Scholar 

  38. Kim S, Senthil C, Jung S, Jung H (2022) Chemically engineered alloy anode enabling fully reversible conversion reaction: design of a C-Sn-bonded aerofilm anode. J Mater Chem A 10:3595–3604

    CAS  Google Scholar 

  39. Wang Q, Zhu M, Chen G, Dudko N, Li Y, Liu H, Shi L, Wu G, Zhang D (2022) High-performance microsized Si anodes for lithium-ion batteries: insights into the polymer configuration conversion mechanism. Adv Mater 34(6):2109658

    CAS  Google Scholar 

  40. Zeng Q, Tian S, Liu G, Yang H, Sun X, Wang D, Huang J, Yan D, Peng S (2022) Sulfur-bridged bonds boost the conversion reaction of the flexible self-supporting MnS@MXene@CNF anode for high-rate and long-life lithium-ion batteries. ACS Appl Mater Interfaces 14(5):6958–6966

    CAS  PubMed  Google Scholar 

  41. Zheng Y, Qiu W, Wang L, Liu J, Chen S, Li C (2022) Triple conductive wiring by electron doping, chelation coating and electrochemical conversion in fluffy Nb2O5 anodes for fast-charging Li-ion batteries. Adv Sci 9(25):2202201

    CAS  Google Scholar 

  42. Islam M, Yang BJ, J, Han S, (2022) Electrochemical sodiation mechanism in magnetite nanoparticle-based anodes: understanding of nanoionics-based sodium ion storage behavior of Fe3O4. ACS Appl Mater Interfaces 14(45):50773–50782

    CAS  PubMed  Google Scholar 

  43. Wang B, Li F, Wang X, Wang G, Wang H, Bai J (2019) Mn3O4 nanotubes encapsulated by porous graphene sheets with enhanced electrochemical properties for lithium/sodium-ion batteries. Chem Eng J 364:57–69

    Google Scholar 

  44. Zhang W, Cao P, Zhang Z, Zhao Y, Zhang Y, Li L, Yang K, Li X, Gu L (2019) Nickel/cobalt metal-organic framework derived 1D hierarchical NiCo2O4/NiO/carbon nanofibers for advanced sodium storage. Chem Eng J 364:123–131

    CAS  Google Scholar 

  45. Kim K, Hong S (2021) Investigation of sodium storage in manganese vanadate MnV2O6 nanobelt and nanoparticle as an anode for sodium-ion batteries. Electrochim Acta 367:137520

    CAS  Google Scholar 

  46. Zheng L, Xue Y, Liu B, Zhou Y, Hao S, Wang Z (2017) High performance Na3V2(PO4)3 cathode prepared by a facile solution evaporation method for sodium-ion batteries. Ceram Int 43:4950–4956

    CAS  Google Scholar 

  47. Wu J, Tian Y, Gao Y, Gao Z, Meng Y, Wang Y, Wang X, Zhou D, Kang F, Li B, Wang G (2022) Rational electrolyte designtoward cyclability remedy for room-temperature sodium-sulfur batteries. Angew Chem Int Ed 61:e202205416

    CAS  Google Scholar 

  48. Yang G, Zhou Z, Liu X, Zhang Y, Wang S, Yan W, Ding S (2023) Bowl-shaped hollow carbon wrapped in graphene grown in situ by chemical vapor deposition as an advanced anode material for sodium-ion batteries. J Colloid Interface Sci 637:283–290

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

XT and AR prepared figures and wrote the manuscript text. RH, QR, and ZW reviewed the manuscript.

Corresponding author

Correspondence to Zhen-Bo Wang.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 826 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, X., Ren, Q., Antonio, R. et al. An investigation of Ni-Co-Mn oxides as anodes for Li+/Na+ ion batteries. Ionics 30, 2689–2696 (2024). https://doi.org/10.1007/s11581-024-05484-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-024-05484-7

Keywords

Navigation