Skip to main content
Log in

Lithium difluoro(oxalate)borate as an efficient and multifunctional additive for extended cycling life of LiFePO4 cathodes

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Reasonable design of cathode-electrolyte interface (CEI) with high electrochemical stability and high ionic conductivity is crucial for improving the electrochemical performance of cathode materials. Herein, lithium difluoro(oxalate)borate (LiDFOB) is used as an efficient electrolyte additive to form a robust, dense, and conductive CEI on LiFePO4 cathode, which significantly enhances the rate capability and cycling stability. Specifically, the introduction of LiDFOB promotes the formation of a fluoride (F)- and boron (B)-rich CEI, effectively enhancing ion transport kinetics. Simultaneously, the generated CEI exhibits excellent stability, efficiently suppressing the continuous decomposition of the electrolyte and structural damage of LiFePO4 cathode over prolonged cycling. Consequently, the LiFePO4 cathode with LiDFOB additive exhibits a highly reversible capacity of 133.4 mAh g−1 at 0.5 C and an excellent capacity retention of 94.4% over 400 cycles, which is superior to LiFePO4 without additive (only 66.1% capacity retention). This work confirms the promising potential of LiDFOB as a multifunctional electrolyte additive and provides new insights for constructing high-performance CEI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study.

References

  1. Ni S, Liu J, Chao D et al (2019) Vanadate-based materials for Li-ion batteries: the search for anodes for practical applications. Adv Energy Mater 9(14):1803324

    Google Scholar 

  2. Choi JW, Aurbach D (2016) Promise and reality of post-lithium-ion batteries with high energy densities. Nat Rev Mater 1(4):16013

    CAS  Google Scholar 

  3. Goodenough JB, Park K-S (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135(4):1167–1176

    CAS  PubMed  Google Scholar 

  4. Shu H, Wang X, Wu Q et al (2013) Improved electrochemical performance of LiFePO4/C cathode via Ni and Mn co-doping for lithium-ion batteries. J Power Sources 237:149–155

    CAS  Google Scholar 

  5. Shu H, Chen M, Fu Y et al (2014) Improvement of electrochemical performance for spherical LiFePO4 via hybrid coated with electron conductive carbon and fast Li ion conductive La0.56Li0.33TiO3. J Power Sources 252:73–78

    CAS  Google Scholar 

  6. Shu H, Wang X, Wen W et al (2013) Effective enhancement of electrochemical properties for LiFePO4/C cathode materials by Na and Ti co-doping. Electrochim Acta 89:479–487

    CAS  Google Scholar 

  7. Larcher D, Tarascon JM (2015) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7(1):19–29

    CAS  PubMed  Google Scholar 

  8. Liu Q, Li Z-F, Liu Y et al (2015) Graphene-modified nanostructured vanadium pentoxide hybrids with extraordinary electrochemical performance for Li-ion batteries. Nat Commun 6(1):6127

    PubMed  Google Scholar 

  9. Du M, Guo J-Z, Zheng S-H et al (2023) Direct reuse of LiFePO4 cathode materials from spent lithium-ion batteries: extracting Li from brine. Chin Chem Lett 34(6):107706

    CAS  Google Scholar 

  10. Dou W, Wan G, Liu T et al (2023) Conductive composite binder for recyclable LiFePO4 cathode. Chin Chem Lett. https://doi.org/10.1016/j.cclet.2023.109389

  11. Wang L, Qiu J, Wang X et al (2022) Insights for understanding multiscale degradation of LiFePO4 cathodes. eScience 2(2):125–137

    Google Scholar 

  12. Park S, Jeong SY, Lee TK et al (2021) Replacing conventional battery electrolyte additives with dioxolone derivatives for high-energy-density lithium-ion batteries. Nat Commun 12(1):838

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang XT, Gu ZY, Ang EH et al (2022) Prospects for managing end-of-life lithium-ion batteries: present and future. Interdiscip Mater 1(3):417–433

    Google Scholar 

  14. Zhang Z, Zhao D, Xu Y et al (2022) A review on electrode materials of fast-charging lithium-ion batteries. Chem Rec 22(10):e202200127

    CAS  PubMed  Google Scholar 

  15. Yoo DJ, Liu Q, Cohen O et al (2023) Rational design of fluorinated electrolytes for low temperature lithium-ion batteries. Adv Energy Mater 13(20):2204182

    CAS  Google Scholar 

  16. Qian Y, Hu S, Zou X et al (2019) How electrolyte additives work in Li-ion batteries. Energy Storage Mater 20:208–215

    Google Scholar 

  17. Haregewoin AM, Wotango AS, Hwang B-J (2016) Electrolyte additives for lithium ion battery electrodes: progress and perspectives. Energy Environ Sci 9(6):1955–1988

    CAS  Google Scholar 

  18. Sun J, Zhang S, Zhang Q et al (2022) Unshackling the reversible capacity of SiOx/graphite-based full cells via selective LiF-induced lithiation. Sci China Mater 65(9):2335–2342

    CAS  Google Scholar 

  19. Beltrop K, Klein S, Nölle R et al (2018) Triphenylphosphine oxide as highly effective electrolyte additive for graphite/NMC811 lithium ion cells. Chem Mater 30(8):2726–2741

    CAS  Google Scholar 

  20. Zhao Q, Guo C, Lu Y et al (2016) Rechargeable lithium batteries with electrodes of small organic carbonyl salts and advanced electrolytes. Ind Eng Chem Res 55(20):5795–5804

    CAS  Google Scholar 

  21. Younesi R, Veith GM, Johansson P et al (2015) Lithium salts for advanced lithium batteries: Li–metal, Li–O2, and Li–S. Energy Environ Sci 8(7):1905–1922

    CAS  Google Scholar 

  22. Dong Q, Guo F, Cheng Z et al (2019) Insights into the dual role of lithium difluoro(oxalato)borate additive in improving the electrochemical performance of NMC811||graphite cells. ACS Appl Energy Mater 3(1):695–704

    Google Scholar 

  23. Lindgren F, Xu C, Niedzicki L et al (2016) SEI formation and interfacial stability of a Si electrode in a LiTDI-salt based electrolyte with FEC and VC additives for Li-ion batteries. ACS Appl Mater Interf 8(24):15758–15766

    CAS  Google Scholar 

  24. Zhou K, Yang H, Zhou J et al (2023) Abnormal electrode behavior of graphite anode operating with the electrolyte containing vinylene carbonate and ethylene sulfite additives. Electrochim Acta 462:142768

    CAS  Google Scholar 

  25. Rezqita A, Sauer M, Foelske A et al (2017) The effect of electrolyte additives on electrochemical performance of silicon/mesoporous carbon (Si/MC) for anode materials for lithium-ion batteries. Electrochim Acta 247:600–609

    CAS  Google Scholar 

  26. Xu M, Zhou L, Hao L et al (2011) Investigation and application of lithium difluoro(oxalate)borate (LiDFOB) as additive to improve the thermal stability of electrolyte for lithium-ion batteries. J Power Sources 196(16):6794–6801

    CAS  Google Scholar 

  27. Applestone D, Manthiram A (2012) Symmetric cell evaluation of the effects of electrolyte additives on Cu2Sb–Al2O3–C nanocomposite anodes. J Power Sources 217:1–5

    CAS  Google Scholar 

  28. Lin L, Yang K, Tan R et al (2017) Effect of sulfur-containing additives on the formation of a solid-electrolyte interphase evaluated by in situ AFM and ex situ characterizations. J Mater Chem A 5(36):19364–19370

    CAS  Google Scholar 

  29. Wang P-L, Sun X-Z, An Y-B et al (2022) Additives to propylene carbonate-based electrolytes for lithium-ion capacitors. Rare Met 41(4):1304–1313

    CAS  Google Scholar 

  30. He R, Peng F, Dunn WE (2017) Chemical and electrochemical stability enhancement of lithium bis(oxalato)borate (LiBOB)-modified solid polymer electrolyte membrane in lithium ion half-cells. Electrochim Acta 246:123–134

    CAS  Google Scholar 

  31. Bian X, Ge S, Pang Q et al (2018) A novel lithium difluoro(oxalate) borate and lithium hexafluoride phosphate dual-salt electrolyte for Li-excess layered cathode material. J Alloys Compd 736:136–142

    CAS  Google Scholar 

  32. Zhang J, Zhang H, Deng L et al (2023) An additive-enabled ether-based electrolyte to realize stable cycling of high-voltage anode-free lithium metal batteries. Energy Storage Mater 54:450–460

    Google Scholar 

  33. Allen JL, Han S-D, Boyle PD (2011) Crystal structure and physical properties of lithium difluoro(oxalato)borate (LiDFOB or LiBF2Ox). J Power Sources 196(22):9737–9742

    CAS  Google Scholar 

  34. Kim J-K, Jeong SM (2020) Physico-electrochemical properties of carbon coated LiFePO4 nanoparticles prepared by different preparation method. Appl Surf Sci 505:144630

    CAS  Google Scholar 

  35. Lai A, Chu Y, Jiang J et al (2022) Self-restriction to form in-situ N, P co-doped carbon-coated LiFePO4 nanocomposites for high-performance lithium ion batteries. Electrochim Acta 414:140161

    CAS  Google Scholar 

  36. Wang Y, Wang X, Jiang A et al (2019) A versatile nitrogen-doped carbon coating strategy to improve the electrochemical performance of LiFePO4 cathodes for lithium-ion batteries. J Alloys Compd 810:151889

    CAS  Google Scholar 

  37. Wang B, Al Abdulla W, Wang D, Zhao XS (2015) A three-dimensional porous LiFePO4 cathode material modified with a nitrogen-doped graphene aerogel for high-power lithium ion batteries. Energy Environ Sci 8(3):869–875

    CAS  Google Scholar 

  38. Wu Y, Chong S, Chen Y (2023) Intermediate phase-assisted Li-intercalation/extraction behavior for LiFePO4 cathode materials. ACS Appl Energy Mater 6(18):9249–9255

    CAS  Google Scholar 

  39. Paolella A, Faure C, Bertoni G et al (2017) Light-assisted delithiation of lithium iron phosphate nanocrystals towards photo-rechargeable lithium ion batteries. Nat Commun 8(1):14643

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Qiu N, Yang Z, Xue R et al (2021) Toward a high-performance aqueous zinc ion battery: potassium vanadate nanobelts and carbon enhanced zinc foil. Nano Lett 21(7):2738–2744

    CAS  PubMed  Google Scholar 

  41. Han J-G, Lee JB, Cha A et al (2018) Unsymmetrical fluorinated malonatoborate as an amphoteric additive for high-energy-density lithium-ion batteries. Energy Environ Sci 11(6):1552–1562

    CAS  Google Scholar 

  42. Li B, Shao Y, He J et al (2022) Cyclability improvement of high voltage lithium cobalt oxide/graphite battery by use of lithium difluoro(oxalate)borate electrolyte additive. Electrochim Acta 426:140783

    CAS  Google Scholar 

  43. Li Y, Cheng B, Jiao F, Wu K (2020) The roles and working mechanism of salt-type additives on the performance of high-voltage lithium-ion batteries. ACS Appl Mater Interf 12(14):16298–16307

    CAS  Google Scholar 

  44. Cha J, Han J-G, Hwang J et al (2017) Mechanisms for electrochemical performance enhancement by the salt-type electrolyte additive, lithium difluoro(oxalato)borate, in high-voltage lithium-ion batteries. J Power Sources 357:97–106

    CAS  Google Scholar 

  45. Zheng H, Xiang H, Jiang F et al (2020) Lithium difluorophosphate-based dual-salt low concentration electrolytes for lithium metal batteries. Adv Energy Mater 10(30):2001440

    CAS  Google Scholar 

  46. Mao M, Huang B, Li Q et al (2020) In-situ construction of hierarchical cathode electrolyte interphase for high performance LiNi0.8Co0.1Mn0.1O2/Li metal battery. Nano Energy 78:105282

    CAS  Google Scholar 

  47. Yang T, Zeng H, Wang W et al (2019) Lithium bisoxalatodifluorophosphate (LiBODFP) as a multifunctional electrolyte additive for 5 V LiNi0.5Mn1.5O4-based lithium-ion batteries with enhanced electrochemical performance. J Mate Chem A 7(14):8292–8301

    CAS  Google Scholar 

  48. Li J, Xing L, Zhang R et al (2015) Tris(trimethylsilyl)borate as an electrolyte additive for improving interfacial stability of high voltage layered lithium-rich oxide cathode/carbonate-based electrolyte. J Power Sources 285:360–366

    CAS  Google Scholar 

  49. Wu F, Zhu Q, Chen R et al (2015) Ionic liquid electrolytes with protective lithium difluoro(oxalate)borate for high voltage lithium-ion batteries. Nano Energy 13:546–553

    CAS  Google Scholar 

  50. Li X, Lin Z, Jin N et al (2021) Perovskite-type SrVO3 as high-performance anode materials for lithium-ion batteries. Adv Mater 34(46):2107262

    Google Scholar 

  51. Li D, Ren X, Ai Q et al (2018) Facile fabrication of nitrogen-doped porous carbon as superior anode material for potassium-ion batteries. Adv Energy Mater 8(34):1802386

    Google Scholar 

Download references

Funding

We gratefully acknowledge the financial support from the National Natural Science Foundation of China (NSFC, 52101262), The Young and Middle-Aged Scientific and Technological Innovation Team in Colleges and Universities in Hubei Province (T2002005) and the 111 project (D20015), and the Open Research Fund Project of Hubei Key Laboratory of Natural Products Research and Development (China Three Gorges University, 2022NPRD05).

Author information

Authors and Affiliations

Authors

Contributions

Le Zhang: methodology, data curation, and writing—original draft. Pengju Li: methodology, data curation, conceptualization, supervision, and writing—review and editing. Dongmei Zhang: methodology and data curation. Cunyuan Pei: methodology and data curation. Bing Sun: methodology and data curation. Shibing Ni: project administration, funding acquisition, and supervision.

Corresponding authors

Correspondence to Pengju Li or Shibing Ni.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1257 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Li, P., Zhang, D. et al. Lithium difluoro(oxalate)borate as an efficient and multifunctional additive for extended cycling life of LiFePO4 cathodes. Ionics 30, 2493–2501 (2024). https://doi.org/10.1007/s11581-024-05472-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-024-05472-x

Keywords

Navigation