Skip to main content
Log in

Structural and electrical studies of Nd and Gd co-doped zirconia electrolytes for IT-SOFC applications

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The Nd and Gd co-doped zirconia Zr1–x–yNdxGdyO2–δ (x, y = 0.025, 0.05, 0.075, and 0.10) system of materials were prepared through a modified sol–gel route. Sintering of the samples was conducted using conventional sintering at 1300 °C for 6 h. The prepared materials are characterized by powder X-ray diffraction (P–XRD), scanning electron microscopy with energy dispersive spectroscope (SEM with EDS), Fourier transform infrared (FTIR), Raman, and impedance spectroscopy. The dense electrolyte pellets are produced with co-doping in zirconia. P–XRD confirmed the formation of samples with single phases with stabilized cubic structure even after the sintering of co-doped zirconia samples. SEM and EDS revealed good density in surface microstructure and elemental confirmation in all the compositions. XRD and SEM studies also revealed the highest relative density and small grain size of Zr0.85Nd0.075Gd0.075O2–δ. FTIR disclosed the absorption bands corresponding to the chemical bonds of oxides in the compositions, and the findings are consistent with the P–XRD data. Raman spectroscopy analysis revealed the further phase confirmation of cubic structure. Impedance spectroscopy unveiled the enhanced electrical properties, i.e., enhanced ionic conductivity and small activation energy of NGZ7.5. The enhanced ionic conductivity, i.e., 0.47 × 10−2 S/cm at 550 °C with the stabilized cubic structure of Zr0.85Nd0.075Gd0.075O2–δ sample makes it suitable for solid electrolytes towards intermediate temperature solid oxide fuel cell applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Dresselhaus MS, Thomas IL (2001) Nature 414:332

  2. Brain CH, Steele J (2001) Mater Sci 36:1053

  3. Stambouli AB, Traversa E (2002) Renew Sustain Energy Rev 6:433

  4. Singhal SC (2000) Solid State Ionics 135:305

  5. Minh NQ (2004) Solid State Ionics 174:271

  6. Minh NQ (1993) J Am Ceram Soc 76:536

  7. Badwal SPS (1992) Solid State Ionics 52:23

  8. Raghvendra PS, Singh RK (2013) J Alloys Compd 549:238

  9. Fu Y-P, Chen S-H, Huang J-J (2010) Int J Hydrog Energy 35:745

  10. Anjaneya KC, Nayaka GP, Manjanna J, Govindaraj G, Ganesh KN (2013) J Alloys Compd 578:53

  11. Pikalova EY, Murashkina AA, Maragou VI, Demin AK, Strekalovsky VN, Tsiakaras PE (2011) Int J Hydrog Energy 36:6175

  12. Lakshmi VV, Bauri R, Gandhi AS, Paul S (2011) Int J Hydrog Energy 36:14936

  13. Ji Y, Liu J, Lu Z, Zhao X, He T, Su W (1999) Solid State Ionics 126:277

  14. Lakshmi VV, Bauri R (2011) Solid State Sci 13:1520

  15. Suresh MB, Johnson R (2012) Int J Energy Res 36:1291

  16. ShyamKumar CN, Bauri R (2014) J Phys Chem Solids 75:642

  17. Mahendran R, Manivannan S, Kumaran SS, Vallimanalan A, Murali M, Raj SG, Babu SPK (2019) J Mater Res Technol 8(6):5867

  18. Guo CX, Wang JX, He CR, Wangn WG (2013) Ceram Int 39:9575

  19. Mahato N, Gupta A, Balani K (2012) Nanomater Energy 1:27

  20. Zhigachev AO, Rodaev VV, Zhigacheva DV, Lyskov NV, Shchukina MA (2021) Ceram Int 47:32490

  21. Nakayama S, Tokunaga R, Takata M, Kondo S, Nakajima Y (2021) Open Ceram 6:100136

  22. Kumar CNS, Bauri R, Reddy GS (2020) J Alloys Compd 833:155100

  23. Xing Y-Z, Men Y-N, Feng X, Geng J-H, Zou Z-R, Chen F-H (2022) J Solid State Chem 315:123497

  24. Kumar A, Jaiswal A, Sanbui M, Omar S (2016) Scr Mater 121:10–13

  25. Alizadeh SM, Mohebbi H, Golmohammad M, Sharifi O, Farzaneh F (2023) J Alloys Compd 938:168553

  26. Keˇzionis A, ˇSalkus T, Dudek M, Madej D, Mosiałek M (2024) J Power Sources 591:233846

  27. Mosiałek M, Hanif MB, ˇSalkus T, Keˇzionis A, Kazakeviˇcius E, Orliukas AF, Socha RP, Łasocha W, Dziubaniuk M, Wyrwa J, Gregor M, Motola M (2023) Ceram Int 49:15276–15283

  28. Swamy B, Venkataramana K, Naresh M, Reddy CV (2022) High Technol Lett 28(12):723

  29. Ramesh S, Raju KCJ (2012) Int J Hydrogen Energy 37:10311

  30. Ramesh S, Ng CK, Tan CY, Wong WH, Ching CY, Muchtar A, Somalu MR, Ramesh S, Chandran H, Devaraj P (2016) Ceram Int 42:14469

  31. Salavati-Niasari M, Dadkhah M, Davar F (2009) Inorg Chim Acta 362:3969

  32. Gao H, Liu J, Chen H, Li S, He T, Ji Y, Zhang J (2008) Solid State Ionics 179:1620

  33. Shannon RD (1976) Acta Cryst A 32:751

  34. Venkataramana K, Madhuri C, Madhusudan C, Reddy YS, Bhikshamaiah G, Reddy CV (2018) Ceram Int 44:6300

  35. Ravindranatha K, Venkataramanab K, Madhurib C, Reddy CV (2018) Mater Today: Proc 5:27142–27148

  36. Babar ZUD, Hanif MB, Lin XL, Gao J, Mosiałek M, Li C-X (2024) J Colloid Interface Sci 654:1124–1135

  37. Keˇ zionis A, ˇSalkus T, Dudek M, Madej D, Mosiałek M, Napruszewska BD, Łasocha W, Hanif MB, Motola M (2024) J Power Sources 591:233846

  38. Berlin J, Lekshmy SS, Ganesan V, Thomas PV, Joy K (2014) Thin Solid Films 550:199

  39. Anandan K, Rajesh K, Gayathri K, Sharma SV, Hussain SGM, Rajendran V (2020) Phys E: Low-Dim Syst Nanostruct 124:114342

  40. Yi L, Lao LE (2006) Solid State Ionics 177:159

  41. Zhang Y, Shan X, Jin Z, Wang Y (2011) J Hazard Mater 192:559

  42. Huang W, Qiu H, Zhang Y, Nan L, Gao L, Chen J, Omran M, Chen G (2022) Ceram Int 48:25374

  43. Zeeshan, Rafiuddin (2018) J Adv Res 9:35

  44. Rashad MM, Baioumy HM (2008) J Mater Proc Technol 195:178

  45. Gazzoli D, Mattei G, Valigi M (2007) J Raman Spectrosc 38:824

  46. Basahel SN, Ali TT, Mokhtar M, KN Rao (2015) Nanoscale Res Lett 10:73

  47. Cai J, Raptis C, Raptis YS, Anastassakis E (1995) Phys Rev B 51:201

  48. Wulfman C, Sadoun M, de la Chapelle ML (2010) IRBM 31:257

  49. Venkataramana K, Madhuri C, Madhusudan C, Bhogi A, Srinivas B, Reddy CV (2022) Mater Sci Semicond Process 142:106495

  50. Madhuri C, Venkataramana K, Shanker J, Reddy CV (2020) J Alloys Compd 849:156636

  51. Kwona OH, Jang C, Lee J, Jeong HY, Kwon Y-I, Joo JH, Kim H (2017) Ceram Int 43:8236–8245

  52. Majedi A, Abbasi A, Davar F (2016) J Sol-Gel Sci Technol 77:542–552

  53. Arabaci A (2017) Metall Mater Trans A 48(5):2282–2288

  54. Momin N, Manjanna J, Aruna ST, Kumar SS, Anjaneya KC (2022) Ceram Int 48:35867–35873

  55. Kirkgeçit R, Torun H (2020) Appl Ceram 14(4):314–320

  56. Anirban S, Dutta A (2016) Solid State Ionics 295:48–56

  57. Zhu M, Yi L, Zhou R, Du C, Tian C, Yang J (2024) J Alloys Compd 976:173108

  58. Hanif MB, Rauf S, Mosiałek M, Khan K, Kavaliuk V, Kezionis A, Salkus T, Gurgul J, Medvedev D, Zimowska M, Madej D, Motola M (2023) Int J Hydrogen Energy 48:37532–37549

  59. Hou J, Liu Y, Cheng C, Cheng F, Su T, Ma C, Miao Y, Wang X (2023) Ceram Int 49:37187–37195

Download references

Acknowledgements

The author B Swamy thanks the CSIR, New Delhi, India, for financial assistance under the scheme of a CSIR-JRF (NET) fellowship during the research work.

Author information

Authors and Affiliations

Authors

Contributions

B Swamy: conceptualization, methodology, investigation, and writing—original draft. Kasarapu Venkataramana: investigation, software, analysis and interpretation of data, validation, draft writing, and correction. Chittimadula Madhuri: investigation, analysis and interpretation of data, data curation, and review and editing. Ashok Bhogi: correction and review and editing. C Vishnuvardhan Reddy: correction, writing—review and editing, and supervision.

Corresponding author

Correspondence to Kasarapu Venkataramana.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swamy, B., Venkataramana, K., Madhuri, C. et al. Structural and electrical studies of Nd and Gd co-doped zirconia electrolytes for IT-SOFC applications. Ionics 30, 2167–2176 (2024). https://doi.org/10.1007/s11581-024-05448-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-024-05448-x

Keywords

Navigation