Skip to main content
Log in

Hydrothermally grown net-like interconnected nanoflakes and microflowers of vanadium oxide for supercapacitive applications

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The net-like interconnected nanoflakes of vanadium oxide are grown on flexible stainless-steel substrate by simple hydrothermal method. Scanning electron microscopy (SEM) studies represent the hierarchical microflowers grown on the net-like nanoflakes’ structure exhibiting the availability of large surface area. The structural, compositional, and elemental mapping analysis are done by using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and electron dispersive X-ray spectroscopy (EDX), respectively. This confirms the presence of vanadium pentoxide phase of the material. Mesoporous structure is confirmed from Brunauer-Emmett-Teller (BET). The mesoporous vanadium oxide has exhibited the specific capacitance of 500 F/g at 0.01A/g current density in 1 M LiCl \({O}_{4}\) electrolyte. The specific capacitance shows 93% retention at 4000 cycles. The internal resistance (Rs) of the electrode is only 4.23 Ω.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data is available on reasonable request to author.

References

  1. Luo B, Ye D, Wang L (2017) Recent progress on integrated energy conversion and storage systems. Adv Sci 4:1700104. https://doi.org/10.1002/advs.201700104

    Article  CAS  Google Scholar 

  2. Dubal DP, Chodankar NR, Kim D-H, Gomez-Romero P (2018) Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem Soc Rev 47:2065–2129. https://doi.org/10.1039/C7CS00505A

    Article  CAS  PubMed  Google Scholar 

  3. Dubal DP, Ayyad O, Ruiz V, Gómez-Romero P (2015) Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chem Soc Rev 44:1777–1790. https://doi.org/10.1039/C4CS00266K

    Article  CAS  PubMed  Google Scholar 

  4. Kim BK, Sy S, Yu A, Zhang J (2015) Electrochemical supercapacitors for energy storage and conversion. In: Handbook of Clean Energy Systems. John Wiley & Sons, Ltd, pp 1–25

  5. Zhang L, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531. https://doi.org/10.1039/b813846j

    Article  CAS  PubMed  Google Scholar 

  6. Pandolfo AG, Hollenkamp AF (2006) Carbon properties and their role in supercapacitors. J Power Sources 157:11–27. https://doi.org/10.1016/j.jpowsour.2006.02.065

    Article  CAS  Google Scholar 

  7. Veerakumar P, Rajkumar C, Chen SM et al (2018) Activated porous carbon supported rhenium composites as electrode materials for electrocatalytic and supercapacitor applications. Electrochim Acta 271:433–447. https://doi.org/10.1016/j.electacta.2018.03.165

    Article  CAS  Google Scholar 

  8. Wang F, Wu X, Yuan X et al (2017) Latest advances in supercapacitors: from new electrode materials to novel device designs. Chem Soc Rev 46:6816–6854

    Article  CAS  PubMed  Google Scholar 

  9. Guan C, Liu J, Wang Y et al (2015) Iron oxide-decorated carbon for supercapacitor anodes with ultrahigh energy density and outstanding cycling stability. ACS Nano 9:5198–5207. https://doi.org/10.1021/acsnano.5b00582

    Article  CAS  PubMed  Google Scholar 

  10. Xiao H, Yao S, Liu H et al (2016) NiO nanosheet assembles for supercapacitor electrode materials. Prog Nat Sci Mater Int 26:271–275. https://doi.org/10.1016/j.pnsc.2016.05.007

    Article  CAS  Google Scholar 

  11. Kannan V, Inamdar AI, Pawar SM et al (2016) Facile route to NiO nanostructured electrode grown by oblique angle deposition technique for supercapacitors. ACS Appl Mater Interfaces 8:17220–17225. https://doi.org/10.1021/acsami.6b03714

    Article  CAS  PubMed  Google Scholar 

  12. Qi Z, Younis A, Chu D, Li S (2016) A facile and template-free one-pot synthesis of Mn3O4 nanostructures as electrochemical supercapacitors. Nano-Micro Lett 8:165–173. https://doi.org/10.1007/s40820-015-0074-0

    Article  CAS  Google Scholar 

  13. Dubal DP, Dhawale DS, Salunkhe RR et al (2010) A novel chemical synthesis and characterization of Mn3O4 thin films for supercapacitor application. Appl Surf Sci 256:4411–4416. https://doi.org/10.1016/j.apsusc.2009.12.057

    Article  CAS  Google Scholar 

  14. Majumdar D, Mandal M, Bhattacharya SK (2019) V2O5 and its carbon-based nanocomposites for supercapacitor applications. ChemElectroChem 6:1623–1648. https://doi.org/10.1002/celc.201801761

    Article  CAS  Google Scholar 

  15. Yang L, Zhang J, Zhang Y et al (2019) A ternary composite RuO2@SWCNT/graphene for high performance electrochemical capacitors. Mater Lett 126860. https://doi.org/10.1016/j.matlet.2019.126860

  16. Pandit B, Sankapal BR, Koinkar PM (2019) Novel chemical route for CeO 2 / MWCNTs composite towards highly bendable solid-state supercapacitor device. Sci Rep 1–13. https://doi.org/10.1038/s41598-019-42301-y

  17. Patake VD, Pawar SM, Shinde VR et al (2010) The growth mechanism and supercapacitor study of anodically deposited amorphous ruthenium oxide films. Curr Appl Phys 10:99–103. https://doi.org/10.1016/j.cap.2009.05.003

    Article  Google Scholar 

  18. Liu BC, Li F, Ma L, Cheng H (2010) Advanced materials for energy storage. 28–62. https://doi.org/10.1002/adma.200903328

  19. Simon P, Gogotsi Y (2009) Materials for electrochemical capacitors. In: Nanoscience and Technology: A Collection of Reviews from Nature Journals pp 320–329

  20. Perera SD, Patel B, Nijem N et al (2011) Vanadium oxide nanowire – carbon nanotube binder-free flexible electrodes for supercapacitors. 936–945. https://doi.org/10.1002/aenm.201100221

  21. Pang H, Dong Y, Ting SL et al (2013) 2D single- or double-layered vanadium oxide nanosheet assembled 3D microflowers: controlled synthesis{,} growth mechanism{,} and applications. Nanoscale 5:7790–7794. https://doi.org/10.1039/C3NR02651E

    Article  CAS  PubMed  Google Scholar 

  22. Bonso JS, Rahy A, Perera SD et al (2012) Exfoliated graphite nanoplatelets–V2O5 nanotube composite electrodes for supercapacitors. J Power Sources 203:227–232. https://doi.org/10.1016/j.jpowsour.2011.09.084

    Article  CAS  Google Scholar 

  23. Lu X, Yu M, Zhai T et al (2013) High energy density asymmetric quasi-solid-state supercapacitor based on porous vanadium nitride nanowire anode. Nano Lett 13:2628–2633. https://doi.org/10.1021/nl400760a

    Article  CAS  PubMed  Google Scholar 

  24. Lee HY, Goodenough JB (1999) Ideal supercapacitor behavior of amorphous V2O5·nH2O in potassium chloride (KCl) aqueous solution. J Solid State Chem 148:81–84. https://doi.org/10.1006/jssc.1999.8367

    Article  CAS  Google Scholar 

  25. Morita T, Wagatsuma Y, Morioka H et al (2004) Ferroelectric property of an epitaxial lead zirconate titanate thin film deposited by a hydrothermal method. J Mater Res 19:1862–1868. https://doi.org/10.1557/JMR.2004.0243

    Article  CAS  Google Scholar 

  26. Mu J, Wang J, Hao J et al (2015) Hydrothermal synthesis and electrochemical properties of V2O5 nanomaterials with different dimensions. Ceram Int 41:12626–12632. https://doi.org/10.1016/j.ceramint.2015.06.091

    Article  CAS  Google Scholar 

  27. Zhang Y, Zheng J, Zhao Y et al (2016) Fabrication of V 2 O 5 with various morphologies for high-performance electrochemical capacitor. Appl Surf Sci 377:385–393. https://doi.org/10.1016/j.apsusc.2016.03.180

    Article  CAS  Google Scholar 

  28. Pandit B, Dubal DP, Gómez-Romero P et al (2017) V2O5 encapsulated MWCNTs in 2D surface architecture: complete solid-state bendable highly stabilized energy efficient supercapacitor device. Sci Rep 7:43430. https://doi.org/10.1038/srep43430

    Article  PubMed  PubMed Central  Google Scholar 

  29. Pan S, Chen L, Li Y et al (2018) Disodium citrate-assisted hydrothermal synthesis of V2O5 nanowires for high performance supercapacitors. RSC Adv 8:3213–3217. https://doi.org/10.1039/c7ra12607g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kang D, Liu Q, Gu J et al (2015) “Egg-Box”-assisted fabrication of porous carbon with small mesopores for high-rate electric double layer capacitors. ACS Nano 9:11225–11233. https://doi.org/10.1021/acsnano.5b04821

    Article  CAS  PubMed  Google Scholar 

  31. Béguin F, Presser V, Balducci A, Frackowiak E (2014) Carbons and electrolytes for advanced supercapacitors. Adv Mater 26:2219–2251. https://doi.org/10.1002/adma.201304137

    Article  CAS  PubMed  Google Scholar 

  32. Feng Y, Zhang M, Guo M, Wang X (2010) Studies on the PEG-assisted hydrothermal synthesis and growth mechanism of ZnO microrod and mesoporous microsphere arrays on the substrate. Cryst Growth Des 10:1500–1507. https://doi.org/10.1021/cg900327v

    Article  CAS  Google Scholar 

  33. Li Q, Kumar V, Li Y et al (2005) Fabrication of ZnO nanorods and nanotubes in aqueous solutions. Chem Mater 17:1001–1006. https://doi.org/10.1021/cm048144q

    Article  CAS  Google Scholar 

  34. Shi R, Yang P, Wang J et al (2012) Growth of flower-like ZnO via surfactant-free hydrothermal synthesis on ITO substrate at low temperature. CrystEngComm 14:5996–6003. https://doi.org/10.1039/C2CE25606A

    Article  CAS  Google Scholar 

  35. Nandagudi A, Nagarajarao SH, Patil SB et al (2023) Porous potassium tantalate-reduced graphene oxide nano cube architecture for high performance hybrid supercapacitors. e-Prime - Adv Electr Eng Electron Energy 4:100182. https://doi.org/10.1016/j.prime.2023.100182

    Article  Google Scholar 

  36. Zhai T, Lu X, Ling Y et al (2014) A new benchmark capacitance for supercapacitor anodes by mixed-valence sulfur-doped V6O13−x. Adv Mater 26:5869–5875. https://doi.org/10.1002/adma.201402041

    Article  CAS  PubMed  Google Scholar 

  37. Qin H, Liang S, Chen L et al (2020) Recent advances in vanadium-based nanomaterials and their composites for supercapacitors. Sustain Energy Fuels 4:4902–4933. https://doi.org/10.1039/D0SE00897D

    Article  CAS  Google Scholar 

  38. Chu J, Kong Z, Lu D et al (2016) Hydrothermal synthesis of vanadium oxide nanorods and their electrochromic performance. Mater Lett 166:179–182. https://doi.org/10.1016/j.matlet.2015.12.067

    Article  CAS  Google Scholar 

  39. Yan J, Wei T, Shao B et al (2010) Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon N Y 48:487–493. https://doi.org/10.1016/j.carbon.2009.09.066

    Article  CAS  Google Scholar 

  40. Khomenko V, Frackowiak E, Béguin F (2005) Determination of the specific capacitance of conducting polymer/nanotubes composite electrodes using different cell configurations. Electrochim Acta 50:2499–2506. https://doi.org/10.1016/j.electacta.2004.10.078

    Article  CAS  Google Scholar 

  41. Mariappan VK, Krishnamoorthy K, Pazhamalai P et al (2018) Electrodeposited molybdenum selenide sheets on nickel foam as a binder-free electrode for supercapacitor application. Electrochim Acta 265:514–522. https://doi.org/10.1016/j.electacta.2018.01.075

    Article  CAS  Google Scholar 

  42. Zhang J, Feng H, Qin Q et al (2016) Interior design of three-dimensional CuO ordered architectures with enhanced performance for supercapacitors. J Mater Chem A 4:6357–6367. https://doi.org/10.1039/C6TA00397D

    Article  CAS  Google Scholar 

  43. Matemadombo F, Nyokong T (2007) Characterization of self-assembled monolayers of iron and cobalt octaalkylthiosubstituted phthalocyanines and their use in nitrite electrocatalytic oxidation. Electrochim Acta 52:6856–6864. https://doi.org/10.1016/j.electacta.2007.05.002

    Article  CAS  Google Scholar 

  44. Muthurasu A, Ganesh V (2012) Electrochemical characterization of Self-assembled Monolayers (SAMs) of silanes on indium tin oxide (ITO) electrodes – tuning electron transfer behaviour across electrode–electrolyte interface. J Colloid Interface Sci 374:241–249. https://doi.org/10.1016/j.jcis.2012.02.007

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the use of instruments at the Department of Physics, Sanjay Ghodawat University, Atigre. AY would like to thank the SARATHI for financial support.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript. Conception: AD Yadav and SP Patil. Experimental design: RB Patil and R Gurav, Carrying out measurements: AD Yadav, M Waikar and R Sonkawade. Manuscript composition: SP Patil, SS Mali and SM Pawar.

Corresponding author

Correspondence to Sarita P. Patil.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, A.D., Patil, R.B., Gurav, R. et al. Hydrothermally grown net-like interconnected nanoflakes and microflowers of vanadium oxide for supercapacitive applications. Ionics 30, 2191–2202 (2024). https://doi.org/10.1007/s11581-024-05430-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-024-05430-7

Keywords

Navigation