Skip to main content
Log in

A functional FeIII-based NH2-MOF as an electrochemical sensor for Cu2+ detection in ethanol fuel

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The presence of Cu2+ in ethanol fuel represents a problem in terms of quality, leading to issues in the engines of automotive vehicles. Thus, this study brings an innovative FeIII-organic framework to develop an electrochemical sensor to detect Cu2+ in ethanolic media. The synthesized metal–organic framework (MOF) was MIL-88b-NH2 and MIL-82, and these materials were characterized using powder X-ray diffraction and infrared spectroscopy. The results showed the successful synthesis of both MOFs with minor synthetic modifications. Subsequently, the modified carbon paste selected to analyze Cu2+ in ethanol fuel was MIL-88b-NH2 based on the results obtained from cyclic voltammetry and electrochemical impedance spectroscopy. Subsequently, square wave anodic stripping voltammetry parameters were optimized using a design of experiments approach. The analytical signal of the electrode exhibited good stability (relative standard deviation = 5.2%). Besides, the correlation coefficient (r) and coefficient of determination (R2) calculated in the calibration curve were 0.9993 and 99.85%, respectively, indicating a good fit of the linear model to the experimental data. The limit of detection obtained from the linear equation was 0.020 µmol L−1. Finally, in the recovery test using spiked samples of ethanol fuel, the obtained values were 83 and 96%, indicating the absence of matrix effects. Our findings demonstrate that the MIL-88b-NH2 modified carbon paste electrode is a suitable sensor for assessing Cu2+ contamination in ethanol fuel under and above the limit permitted by Brazilian legislation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data can be requested on demand.

References

  1. Ding M, Flaig RW, Jiang H-L, Yaghi OM (2019) Carbon capture and conversion using metal–organic frameworks and MOF-based materials. Chem Soc Rev 48:2783–2828. https://doi.org/10.1039/C8CS00829A

    Article  CAS  PubMed  Google Scholar 

  2. Yaghi OM, Li G, Li H (1995) Selective binding and removal of guests in a microporous metal–organic framework. Nature 378:703–706. https://doi.org/10.1038/378703a0

    Article  CAS  Google Scholar 

  3. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) The chemistry and applications of metal-organic frameworks. Science 341:974–987. https://doi.org/10.1126/science.1230444

    Article  CAS  Google Scholar 

  4. Griffin SL, Champness NR (2020) A periodic table of metal-organic frameworks. Coord Chem Rev 414:213295–213315. https://doi.org/10.1016/j.ccr.2020.213295

    Article  CAS  Google Scholar 

  5. Xue DX, Wang Q, Bai J (2019) Amide-functionalized metal–organic frameworks: syntheses, structures and improved gas storage and separation properties. Coord Chem Rev 378:2–16. https://doi.org/10.1016/j.ccr.2017.10.026

    Article  CAS  Google Scholar 

  6. Kempahanumakkagari S, Vellingiri K, Deep A et al (2018) Metal–organic framework composites as electrocatalysts for electrochemical sensing applications. Coord Chem Rev 357:105–129. https://doi.org/10.1016/j.ccr.2017.11.028

    Article  CAS  Google Scholar 

  7. Hersey M, Berger SN, Holmes J et al (2019) Recent developments in carbon sensors for At-source electroanalysis. Anal Chem 91:27–43. https://doi.org/10.1021/acs.analchem.8b05151

    Article  CAS  PubMed  Google Scholar 

  8. Cruz-Navarro JA, Hernandez-Garcia F, Alvarez Romero GA (2020) Novel applications of metal-organic frameworks (MOFs) as redox-active materials for elaboration of carbon-based electrodes with electroanalytical uses. Coord Chem Rev 412:213263–213282. https://doi.org/10.1016/j.ccr.2020.213263

    Article  CAS  Google Scholar 

  9. Khakyzadeh V, Sediqi S (2022) The electro-oxidation of primary alcohols via a coral-shaped cobalt metal–organic framework modified graphite electrode in neutral media. Sci Rep 12:8560–8571. https://doi.org/10.1038/s41598-022-12200-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kung CW, Li YS, Lee MH et al (2016) In situ growth of porphyrinic metal-organic framework nanocrystals on graphene nanoribbons for the electrocatalytic oxidation of nitrite. J Mater Chem A 4:10673–10682. https://doi.org/10.1039/c6ta02563c

    Article  CAS  Google Scholar 

  11. Wang Y, Wu Y, Xie J, Hu X (2013) Metal-organic framework modified carbon paste electrode for lead sensor. Sensors Actuators B Chem 177:1161–1166. https://doi.org/10.1016/j.snb.2012.12.048

    Article  CAS  Google Scholar 

  12. Squissato AL, Almeida ES, Silva SG et al (2018) Screen-printed electrodes for quality control of liquid (Bio)fuels. TrAC - Trends Anal Chem 108:210–220. https://doi.org/10.1016/j.trac.2018.08.024

    Article  CAS  Google Scholar 

  13. Almeida ES, Richter EM, Munoz RAA (2014) On-site fuel electroanalysis: determination of lead, copper and mercury in fuel bioethanol by anodic stripping voltammetry using screen-printed gold electrodes. Anal Chim Acta 837:38–43. https://doi.org/10.1016/j.aca.2014.05.031

    Article  CAS  PubMed  Google Scholar 

  14. Saciloto TR, Cervini P, Cavalheiro ÉTG (2014) Simultaneous voltammetric determination of Zn(II), Pb(II), Cu(II), and Hg(II) in ethanol fuel using an organofunctionalized modified graphite-polyurethane composite disposable screen-printed device. Electroanalysis 26:2664–2676. https://doi.org/10.1002/elan.201400282

    Article  CAS  Google Scholar 

  15. Squissato AL, Lima AF, Almeida ES et al (2017) Eucalyptus pulp as an adsorbent for metal removal from biodiesel. Ind Crops Prod 95:1–5. https://doi.org/10.1016/j.indcrop.2016.10.004

    Article  CAS  Google Scholar 

  16. ANP - Agência Nacional do Petróleo (2022) RESOLUÇÃO ANP No 907/2022. https://atosoficiais.com.br/anp/resolucao-n-907-2022-dispoe-sobre-as-especificacoes-do-etanol-combustivel-e-suas-regras-de-comercializacao-em-todo-o-territorio-nacional. Accessed 8 Mar 2023

  17. Belincanta J, Alchorne JA, Teixeira Da Silva M (2016) The Brazilian experience with ethanol fuel: Aspects of production, use, quality and distribution logistics. Brazilian J Chem Eng 33:1091–1102. https://doi.org/10.1590/0104-6632.20160334s20150088

    Article  CAS  Google Scholar 

  18. ANP Como funciona a fiscalização do abastecimento pela ANP. https://www.gov.br/anp/pt-br/canais_atendimento/imprensa/kits-de-imprensa-1/kit-imprensa-anp-fiscalizacao.pdf. Accessed 8 Mar 2023

  19. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (2020) NBR 11331: Ethyl alcohol - determination of iron and cooper content - flame atomic absorption spectrometric method. Rio de Janeiro

  20. Bauer S, Serre C, Devic T et al (2008) High-throughput assisted rationalization of the formation of metal organic frameworks in the iron(III) aminoterephthalate solvothermal system. Inorg Chem 47:7568–7576. https://doi.org/10.1021/ic800538r

    Article  CAS  PubMed  Google Scholar 

  21. Sanselme M, Grenèche J-M, Riou-Cavellec M, Férey G (2004) The first ferric carboxylate with a three-dimensional hydrid open-framework (MIL-82): its synthesis, structure, magnetic behavior and study of its dehydration by Mössbauer spectroscopy. Solid State Sci 6:853–858. https://doi.org/10.1016/j.solidstatesciences.2004.04.001

    Article  CAS  Google Scholar 

  22. Fukuda IM, Pinto CFF, Moreira CDS et al (2018) Design of experiments (DoE) applied to pharmaceutical and analytical quality by design (QbD). Brazilian J Pharm Sci 54:1–16. https://doi.org/10.1590/s2175-97902018000001006

    Article  CAS  Google Scholar 

  23. Nakamoto K (1986) Infrared and Raman spectra of inorganic and coordination compounds, 4th edn. John Wiley & Sons

    Google Scholar 

  24. Deacon G, Phillips R (1980) Relationships between the carbon-oxygen stretching frequencies of carboxylate complexes and the type of carboxylate coordination. Coord Chem Rev 33:227–250. https://doi.org/10.1016/S0010-8545(00)80455-5

    Article  CAS  Google Scholar 

  25. Jenkins R, Snyder RL (1996) Introduction to X-ray powder diffractometry. John Wiley & Sons Inc, Hoboken, NJ, USA

    Book  Google Scholar 

  26. Li Y, Xia T, Zhang J et al (2019) A manganese-based metal-organic framework electrochemical sensor for highly sensitive cadmium ions detection. J Solid State Chem 275:38–42. https://doi.org/10.1016/j.jssc.2019.03.051

    Article  CAS  Google Scholar 

  27. Wang Y, Wang L, Huang W et al (2017) A metal–organic framework and conducting polymer based electrochemical sensor for high performance cadmium ion detection. J Mater Chem A 5:8385–8393. https://doi.org/10.1039/C7TA01066D

    Article  CAS  Google Scholar 

  28. Uygun ZO, Ertuğrul Uygun HD (2014) A short footnote: circuit design for faradaic impedimetric sensors and biosensors. Sensors Actuators B Chem 202:448–453. https://doi.org/10.1016/j.snb.2014.05.029

    Article  CAS  Google Scholar 

  29. Marrubini G, Dugheri S, Cappelli G et al (2020) Experimental designs for solid-phase microextraction method development in bioanalysis: a review. Anal Chim Acta 1119:77–100. https://doi.org/10.1016/j.aca.2020.04.012

    Article  CAS  PubMed  Google Scholar 

  30. Silva LRG, Rodrigues JGA, de Vasconcellos MLS et al (2022) Portable and simple electroanalytical procedure for simultaneous detection of dipyrone and norfloxacin with disposable commercial electrodes in water and organic fertilizers. Ionics (Kiel) 28:4833–4841. https://doi.org/10.1007/s11581-022-04689-y

    Article  CAS  Google Scholar 

  31. INMETRO (2016) Orientação sobre validação de métodos analíticos. http://www.inmetro.gov.br/Sidoq/Arquivos/Cgcre/DOQ/DOQ-Cgcre-8_05.pdf. Accessed 10 Mar 2023

  32. Pournara AD, Margariti A, Tarlas GD et al (2019) A Ca2+ MOF combining highly efficient sorption and capability for voltammetric determination of heavy metal ions in aqueous media. J Mater Chem A 7:15432–15443. https://doi.org/10.1039/C9TA03337H

    Article  CAS  Google Scholar 

  33. Jin J-C, Wu J, Yang G-P et al (2016) A microporous anionic metal–organic framework for a highly selective and sensitive electrochemical sensor of Cu2+ ions. Chem Commun 52:8475–8478. https://doi.org/10.1039/C6CC03063G

    Article  CAS  Google Scholar 

  34. Niu B, Li X, Xia W et al (2022) Ag@Ni3(BTC)2 microspheres showing high electrochemical activity and their application as supercapacitors and electrochemical sensors. Synth Met 287:117073. https://doi.org/10.1016/j.synthmet.2022.117073

    Article  CAS  Google Scholar 

  35. Theerthagiri S, Rajkannu P, Senthil Kumar P et al (2022) Electrochemical sensing of copper(II) ion in water using bi-metal oxide framework modified glassy carbon electrode. Food Chem Toxicol 167:113313. https://doi.org/10.1016/j.fct.2022.113313

    Article  CAS  PubMed  Google Scholar 

  36. Ehzari H, Amiri M, Safari M, Samimi M (2022) Zn-based metal-organic frameworks and p-aminobenzoic acid for electrochemical sensing of copper ions in milk and milk powder samples. Int J Environ Anal Chem 102:4364–4377. https://doi.org/10.1080/03067319.2020.1784410

    Article  CAS  Google Scholar 

  37. Wan J, Shen Y, Xu L et al (2021) Ferrocene-functionalized Ni(II)-based metal-organic framework as electrochemical sensing interface for ratiometric analysis of Cu2+, Pb2+ and Cd2+. J Electroanal Chem 895:115374. https://doi.org/10.1016/j.jelechem.2021.115374

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Laboratório Multiusuário de Instrumentação – LabMInst (LabPetro-UFES, Brazil) for performing FTIR, Fluorescence measurements (Technical Cooperation Agreements No. 0050.0022844.06.4).

The authors would like to thank Laboratório Multiusuários de difração de raios X (LabPetro-UFES, Brazil) for performing PXRD measurement (Technical Cooperation Agreements FAPES No. 162/2020).

Funding

The authors, R. Fonseca and G. Santos, were funded with a scholarship from the Coordination of Superior Level Staff Improvement and the Brazilian National Council for Scientific and Technological Development (No. 158768/2019–1), respectively.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection, and analysis were performed by R. R. F. F., G. F. S. S., and J. G. A. R. The first draft of the manuscript was written by R. R. F. F., and all authors commented on previous versions of the manuscript. R. Q. F. and P. P. L. read and approved the final manuscript.

Corresponding author

Correspondence to Priscilla P. Luz.

Ethics declarations

Ethical approval

This research did not involve human or animal samples.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 949 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fonseca, R.R.F.d., Santos, G.F.S.d., Rodrigues, J.G.A. et al. A functional FeIII-based NH2-MOF as an electrochemical sensor for Cu2+ detection in ethanol fuel. Ionics 30, 2397–2407 (2024). https://doi.org/10.1007/s11581-024-05425-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-024-05425-4

Keywords

Navigation